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Introduction

Interval matrix
An interval matrix

A= [A,Z]:{AER’"X”|A§A§Z}.
The center and radius matrices

A< =LA+ A), AR :=1i(A-A).

The set of all m x n interval matrices: TR™*".




Introduction

Parametric interval system

Consider a parametric interval linear system

A(p)x = b(p),

in which parameters have a linear structure

K K
Ap) =Y AWp., b(p) =D bWp.
k=1 k=1
Herein,
o A AK) e Rrxn and (1) b(K) € R” are fixed,
@ parameters py, ..., px come from interval domains py,...,pyx € IR.
Solution set

Y ={xeR" 3pep:Alp)x=b(p)}
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p1 € [0.0,1.0], p» € [0.0,0.9],
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Traditional approach

Find a tight box (an interval vector) containing X.

Drawback. Often poor approximation of the set.

p-solution (Kolev, 2014, 2016; Skalna & H., 2017)
Find an enclosure in the form of a zonotope

x(p) = A(p)*b(p) € Lp+x, pEP
for some L € R"™K and x € IR".

Advantages.
@ If needed, box enclosure is computed simply as Lp + x
@ We also have an inner estimation
[Lp® — |L|p™ + X, Lp® +|L|p™ + x] C hull(T)
@ Suitable for further processing (in optimization, CSP,...)




Box vs. p-solution

Example

@ Interval box and a finer enclosure by a zonotope.

@ Zonotopes are special convex symmetric polyhedra
(images of boxes under linear mappings).




Interval Tools

Traditional tool — interval arithmetic

at+b=[a+ba+bh],
a—b=[a—b,3— b
a- b = [min(ab, ab,3ab,ab), max(ab, ab, 3b, ab)],
a/b = [min(a/b, a/b,3/b,3/B), max(a/b, a/b,3/b,3/B)], 0 b.




Interval Tools

Affine arithmetic

Affine form one-dimensional parameter
%(p) :=x"p+x, pep=[-1,1]".
Addition and multiples by o € R:

x(p)+9(p) = (x+y) p+(x+y), pep
ax(p) := (ax)"p+(ax), pep.
Nonlinear operations, including multiplication, must be approximated, e.g.,
2(p) - 9(p) == (y°x +x°y) p+ 2,

where z encloses the accumulative error set.
(Optimal z can be computed in O(n) by Skalna & H., 2017.)




Some of Methods

Iterative Methods
@ Constraint satisfaction technique (Kolev, 2014)
@ A class of iterative methods (Kolev, 2016)
o Gauss—Seidel type approach (Skalna & H., 2017)
@ Krawczyk type approach (Skalna & H., 2018)

Direct Methods
@ Parametric direct method (Kolev, 2016)
@ Generalized expansion method (Skalna & H., 2018)




Preliminaries

Assume affine form of the interval parametric system

A(p)x =b(p), pep=[-1,1]"
where

Alp)=>r 1 A¥p+ A, pep,

b(p) => 1, b¥p+b, pep.

(Nonlinear dependencies are linearized by affine arithmetic.)

Preconditioning
Assume preconditioning by midpoint inverse such that the system reads

A(p)x =b(p), pep
with A€ = I,

Residual correction
Shift x such that b = 0. (x — x — (A°)~15h°)
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lterative Methods: Krawczyk-Type lterations
Krawczyk-Type Iterations

%(p) = b(p) + (I, — A(p))x(p),

where X(p) is a p-enclosure of the solution set, and the right-hand side is
evaluated by affine arithmetic.

Proposition

IfP(Zle |A)| 4 AR) < 1, then
@ the iterations converge to a unique fixed point for each initial x(p),

@ its interval hull equals the Parametric Bauer—Skeel enclosure.
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Generalized Expansion Method

Expansion of the inverse matrix
Let A e A(p), p € p, and denote B := I, — A
If p(B) < 1, then by Neumann series
AT = (= B) ™ = TR, B = £, B + A”1B™!
C Y7y Bl + HB™,

where H is computed as follows:

o denote C := A(p), for which C¢ = I,

o then H = hull{C~!, C € C} is effectively computable (Rohn, 2011):

H— [-M+disg(z) M, M=C 130, zm— —2Mi
= 1aglz), 5 —C = U, Z,.—2Mii_1.
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Generalized Expansion Method

The resulting p-solution computed by affine arithmetic (2 versions)
%(p) := Em: B(p)' + Hé(p)’"+1> b(p)
= Zm: B(p)'b(p) + HB(p)™ ' b(p).
@ The second one faster, but not always tighter.

@ Practically, m = 3 seems to be a good choice.

@ Provably as good as the Parametric direct method (Kolev, 2016),
which is the case with m = —1.
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Numerical Results and Conclusion

o Competitive to most of the common methods.
@ Useful for both standard and parametric (linear or nonlinear) interval
equations.

@ Benefit of the p-solution affine form: smaller enclosing set, inner
estimation, useful for further processing.
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