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Motivation: Numerical errors

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .
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Motivation: Computer-assisted proofs

Kepler conjecture

What is the densest packing of balls? (Kepler,
1611)

That one how the oranges are stacked in a shop.

The conjecture was proved by T.C. Hales (2005).

Double bubble problem

What is the minimal surface of two given volumes?

Two pieces of spheres meeting at an angle of 120◦.

Hass and Schlafly (2000) proved the equally sized case.
Hutchings et al. (2002) proved the general case.
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Verification: Introduction

Can we obtain rigorous numerical results by using floating-point
arithmetic?

Yes, by extending to interval arithmetic.

Example

10

3
∈ [3.3333333333333333333, 3.3333333333333333334],

√
2 ∈ [1.4142135623730950488, 1.4142135623730950489].
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Interval computations

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

Main problem

Let f : Rn 7→ R
m and x ∈ IR

n. Determine the image

f (x) = {f (x) : x ∈ x}.

Monotone functions

If f : x → R is non-decreasing, then f (x) = [f (x), f (x)].

(Similarly for piece-wise monotone functions.)
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Interval arithmetic

Interval arithmetic (incl. rounding, IEEE standard)

a + b = [a + b, a + b],

a − b = [a − b, a − b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)], 0 6∈ b.

Theorem (Basic properties of interval arithmetic)

Interval addition and multiplication is commutative and associative.

It is not distributive in general, but sub-distributive instead,

∀a,b, c ∈ IR : a(b + c) ⊆ ab + ac .

Example (a = [1, 2], b = 1, c = −1)

a(b + c) = [1, 2] · (1− 1) = [1, 2] · 0 = 0,

ab + ac = [1, 2] · 1 + [1, 2] · (−1) = [1, 2] − [1, 2] = [−1, 1].
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Direct usage of interval arithmetic: No, please

Why not to replace all operations by the interval operations from the very
beginning?

Example (Amplification factor for the interval Gaussian elimination)

n 20 50 100 170

amplification 102 105 1010 1016

Advice

Postpone interval computation to the very end.
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Verification

Verification

Compute a solution by floating-point arithmetic, and then to verify that
the result is correct or determine rigorous distance to a true solution.

Typically, we can prove uniqueness (= the problem is well posed).
Therefore, we can verify only robust properties!
Verifying singularity of a matrix thus cannot be performed!

Verification paradigm

every computation on a computer should be done in a verified way

we want not much extra computational cost
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Verification for nonlinear equations

Verification method for one root of a function f : Rn → R
n.

Problem statement

Given x∗ ∈ R
n a numerically computed (= approximate) solution of

the system f (x) = 0,

find a small interval 0 ∈ y ∈ IR
n such that the true solution lies in

x∗ + y .
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Illustration of verification

Example

Illustration of the verification of x∗ to be a solution of f (x) = 0.

1

2

3

1 2 3 4 5 x1

x2

f1(x) = 0 f2(x) = 0

x∗x∗

10 / 20



Ingredients

Brouwer fixed-point theorem

Let U be a convex compact set in R
n and g : U → U a continuous

function. Then there is a fixed point, i.e., ∃x ∈ U : g(x) = x .

Observation

Finding a root of f (x) is equivalent to finding a fixed-point of the function
g(y) ≡ y − C · f (x∗ + y), where C is any nonsingular matrix of order n.

Perron theory of nonnegative matrices

If |A| ≤ B , then ρ(A) ≤ ρ(B).
(≤ is meant entrywise and ρ(·) is the spectral radius)

If A ≥ 0, x > 0 and Ax < αx , then ρ(A) < α.

Lemma

If z + Ry ⊆ int y , then ρ(R) < 1 for every R ∈ R .

Proof. |R |y∆ < y∆, whence by Perron theory ρ(R) < 1.
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Cooking

Theorem

Suppose 0 ∈ y . Now if

−C · f (x∗) + (I − C · ∇f (x∗ + y)) · y ⊆ int y ,

then:

C and every matrix in ∇f (x∗ + y) are nonsingular, and

there is a unique root of f (x) in x∗ + y .

Proof.

By the mean value theorem,

f (x∗ + y) ∈ f (x∗) +∇f (x∗ + y)y .

By the assumptions, the function

g(y) = y − C · f (x∗ + y) ∈ −C · f (x∗) + (I − C · ∇f (x∗ + y))y ⊆ int y

has a fixed point, which shows “existence”.

By Lemma, C and ∇f (x∗ + y) are nonsingular, implying “uniqueness”.
12 / 20



Eating

Implementation

take C ≈ ∇f (x∗)−1 (numerically computed inverse),

take y := C · f (x∗) and repeat inflation

y :=

(

−C · f (x∗)+(I −C ·∇f (x∗+y)) ·y
)

· [0.9, 1.1]+10−20 [−1, 1]

until the assumption of Theorem are satisfied.
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Verification of a linear system of equations

Problem formulation

Given a real system Ax = b and x∗ approximate solution, find y ∈ IR
n

such that A−1b ∈ x∗ + y .

Example

x1

x2

x∗
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Verification of a linear system of equations

Given the system Ax = b and an approximate solution x∗.

Theorem

Suppose 0 ∈ y . Now if

C (b − Ax∗) + (I − CA)y ⊆ int y ,

then:

C and A are nonsingular,

there is a unique solution of Ax = b in x∗ + y .

Proof.

Use the previous result with f (x) = Ax − b.

Implementation

take C ≈ A−1 (numerically computed inverse),
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Verification of a linear system of equations

ε-inflation method (Caprani and Madsen, 1978, Rump, 1980)

Repeat inflating y := [0.9, 1.1]x + 10−20[−1, 1] and updating

x := C (b − Ax∗) + (I − CA)y

until x ⊆ int y .

Then, Σ ⊆ x∗ + x .

Results

Verification is theoretically 9–12 times slower than solving the original
problem, practically only about 7 times slower (for random instances
of dimension 100 to 2000).
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Verification of a linear system of equations

Example

Let A be the Hilbert matrix of size 10 (i.e., aij =
1

i+j−1), and b := Ae.

Then Ax = b has the solution x = e = (1, . . . , 1)T .

Approximate solution by
Matlab:

0.999999999235452
1.000000065575364
0.999998607887449
1.000012638750021
0.999939734980300
1.000165704992114
0.999727989024899
1.000263042205847
0.999861803020249
1.000030414871015

Enclosing interval by ε-inflation method (2 it-
erations):

[ 0.99999973843401, 1.00000026238575]
[ 0.99999843048508, 1.00000149895660]
[ 0.99997745481481, 1.00002404324710]
[ 0.99978166603900, 1.00020478046370]
[ 0.99902374408278, 1.00104070076742]
[ 0.99714060702796, 1.00268292103727]
[ 0.99559932282378, 1.00468935360003]
[ 0.99546972629357, 1.00425202249136]
[ 0.99776781605377, 1.00237789028988]
[ 0.99947719419921, 1.00049082925529]

Overestimation factor about 20; compare κ(A) ≈ 1.6 · 1013.
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Verification of a linear system of equations

Challenge

verification for large systems
(one cannot use preconditioning by the inverse matrix)

Verification of other problems

linear algebraic problems (eigenvalues, rank, decompositions,. . . )

optimization (linear, semidefinite programming,. . . )

infinite-dimensional problems (ODE,. . . )

References

S.M. Rump.
Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica, 19:187–449, 2010.
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Software

Matlab/Octave libraries

Interval for Octave (by O. Heimlich),
interval arithmetic and elementary functions
https://wiki.octave.org/Interval_package

Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/

Versoft (by J. Rohn), verification software
Lime (by M. Hlad́ık, J. Horáček et al.), under development

Other languages libraries

Int4Sci Toolbox (by Coprin team, INRIA),
A Scilab Interface for Interval Analysis
http://www-sop.inria.fr/coprin/logiciels/Int4Sci/

C++ libraries: C-XSC, PROFIL/BIAS, BOOST interval, FILIB++,. . .

many others: for Fortran, Pascal, Julia, Maple, Python,. . .
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When no verification is used. . .

The Patriot Missile failure, Gulf War, Feb. 25, 1991

Small rounding error of binary
representation of 1

10 expanded to
0.34 s during 100 hours.

As a consequence, the battery failed
to intercept an incoming Iraqi Scud
missile, which killed 28 soldiers.

The sinking of the Sleipner A offshore platform Norway, Aug. 13, 1991

Inaccurate finite element approximation
of the linear elastic model – the shear
stresses were underestimated by 47%.

The structure sprang a leak and needed
to be sunk under a controlled operation.

20 / 20


