Linear Interval Parametric Approach to Testing Pseudoconvexity

Milan Hladík* Lubomir V. Kolev Iwona Skalna

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

LeGO 2018 XIV Global Optimization Workshop, Leiden September 18–21, 2018

Pseudoconvexity

Motivation

Convexity has many nice properties in the context of optimization. What about its generalizations?

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable and $\mathcal{S} \subset \mathbb{R}^n$ an open convex set. Then f(x) is *pseudoconvex* on \mathcal{S} if for every $x, y \in \mathcal{S}$ we have

$$\nabla f(x)^T (y-x) \ge 0 \quad \Rightarrow \quad f(y) \ge f(x).$$

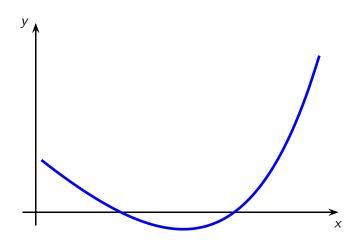
Key Properties

Minimizing pseudoconvex objective functions on convex feasible sets,

- each stationary point is a global minimum,
- each local minimum is a global minimum,
- the optimal solution set is convex.

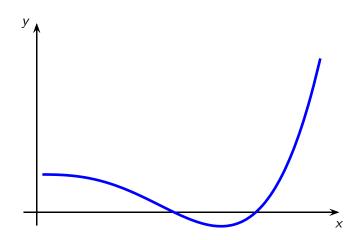
Illustration

Convex function



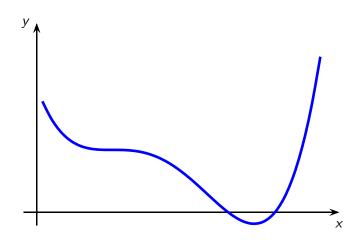
Illustration

Pseudoconvex function



Illustration

Quasiconvex function



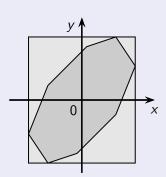
Problem Formulation

Problem formulation

Given an affine form

$$\mathbf{x}(\mathbf{p}) := \left\{ \sum_{k=1}^K x^{(k)} p_k + x_c, \ p \in \mathbf{p} \right\}.$$

Geometrically it is a zonotope



The question

Is a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ pseudoconvex on x(p)?

Problem Formulation

Theorem (Ahmadi et al., 2013)

Deciding pseudoconvexity is NP-hard on a class of quartic polynomials.

Aim

Therefore we will be content with cheap sufficient conditions.

Technical Tools

Interval analysis

Interval arithmetic:

$$\begin{aligned} \boldsymbol{x} + \boldsymbol{y} &= [\underline{x} + \underline{y}, \overline{x} + \overline{y}], \\ \boldsymbol{x} - \boldsymbol{y} &= [\underline{x} - \overline{y}, \overline{x} - \underline{y}], \\ \boldsymbol{x} \boldsymbol{y} &= [\min(\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}), \max(\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y})], \\ \boldsymbol{x} / \boldsymbol{y} &= [\min(\underline{x}/y, \underline{x}/\overline{y}, \overline{x}/y, \overline{x}/\overline{y}), \max(\underline{x}/y, \underline{x}/\overline{y}, \overline{x}/y, \overline{x}/\overline{y})], \quad 0 \notin \boldsymbol{y}. \end{aligned}$$

Evaluation of functions and their derivatives, . . .

For interval matrix A: regularity, eigenvalues, det, positive semidef., ...

Technical Tools

Affine arithmetic (reduced/revised version)

Given two affine forms

$$\mathbf{x}(p) := \sum_{k=1}^{K} x_k p_k + \mathbf{x}_0 = \mathbf{x}^T p + \mathbf{x}_0,$$

 $\mathbf{y}(p) := \sum_{k=1}^{K} y_k p_k + \mathbf{y}_0 = \mathbf{y}^T p + \mathbf{y}_0,$

where $p \in \mathbf{p}$. For any $\alpha, \beta \in \mathbb{R}$ we have

$$\mathbf{x}(p) + \mathbf{y}(p) = (x + y)^{T} p + (\mathbf{x}_{0} + \mathbf{y}_{0}),$$

$$\alpha \mathbf{x}(p) = (\alpha x)^{T} p + (\alpha \mathbf{x}_{0}).$$

Nonlinear operations have to be approximated. Multiplication usually reads

$$\mathbf{x}(p) \cdot \mathbf{y}(p) = ((y_0)_c x + (x_0)_c y)^T p + \mathbf{z},$$

where $\mathbf{z} = [z_c - z_\Delta, z_c + z_\Delta]$ encloses the accumulative error with

$$z_{c} = x_{c}y_{c} + \frac{1}{2}x^{T}y,$$

$$z_{\Delta} = |x_{c}|y_{\Delta} + |y_{c}|x_{\Delta} + (|x|^{T}e + x_{\Delta})(|y|^{T}e + y_{\Delta}) - \frac{1}{2}|x|^{T}|y|.$$

Method Based on Mereau and Paquet

Theorem (Mereau and Paquet, 1974)

The function f(x) is pseudoconvex on set S if there is $\alpha \geq 0$ such that

$$\nabla^2 f(x) + \alpha \nabla f(x) \nabla f(x)^T \tag{*}$$

is positive semidefinite for all $x \in S$.

Proposition

We have that (\star) is positive semidefinite if and only if

$$\begin{pmatrix} -\frac{1}{\alpha} & \nabla f(x)^T \\ \nabla f(x) & \nabla^2 f(x) \end{pmatrix}$$

has at most one simple negative eigenvalue.

Method Based on Mereau and Paquet

Theorem (Mereau and Paquet, 1974)

The function f(x) is pseudoconvex on set S if there is $\alpha \geq 0$ such that

$$\nabla^2 f(x) + \alpha \nabla f(x) \nabla f(x)^T \tag{*}$$

is positive semidefinite for all $x \in \mathcal{S}$.

Method

- Enclose $\nabla f(\mathbf{x}(\mathbf{p})) \subseteq \mathbf{g}(\mathbf{p}), \ \nabla^2 f(\mathbf{x}(\mathbf{p})) \subseteq \mathbf{H}(\mathbf{p})$
- Denote

$$\mathbf{D}'(\mathbf{p}) := \begin{pmatrix} -\frac{1}{\alpha} & \mathbf{g}(\mathbf{p})^T \\ \mathbf{g}(\mathbf{p}) & \mathbf{H}(\mathbf{p}) \end{pmatrix} \supseteq \begin{pmatrix} -\frac{1}{\alpha} & \nabla f(\mathbf{x})^T \\ \nabla f(\mathbf{x}) & \nabla^2 f(\mathbf{x}) \end{pmatrix}$$

• Check that the second smallest eigenvalue of the matrices $m{D}'(m{p})$ stays nonnegative.

Method Based on Crouzeix

Theorem (Crouzeix, 1998)

Function f(x) is pseudoconvex on S if for each $x \in S$ and every $y \neq 0$ such that $\nabla f(x)^T y = 0$ we have $y^T \nabla^2 f(x) y > 0$.

Equivalently, by Crouzeix (1998),

$$D(x) := \begin{pmatrix} 0 & \nabla f(x)^T \\ \nabla f(x) & \nabla^2 f(x) \end{pmatrix}.$$

has n positive eigenvalues on S.

Method

Compute

$$\mathbf{D}(\mathbf{p}) := \begin{pmatrix} 0 & \mathbf{g}(\mathbf{p})^T \\ \mathbf{g}(\mathbf{p}) & \mathbf{H}(\mathbf{p}) \end{pmatrix} \supseteq \begin{pmatrix} 0 & \nabla f(x)^T \\ \nabla f(x) & \nabla^2 f(x) \end{pmatrix}$$

• Compute an enclosure λ_2 for the second smallest eigenvalue of $\boldsymbol{D}(\boldsymbol{p})$ and check that $\underline{\lambda}_2>0$.

Method Based on Crouzeix and Ferland

Theorem (Crouzeix and Ferland, 1982)

Function f(x) is pseudoconvex on S if for each $x \in S$ either $\nabla^2 f(x)$ is positive semidefinite, or $\nabla^2 f(x)$ has one simple negative eigenvalue and there is $b \in \mathbb{R}^n$ such that $\nabla^2 f(x)b = \nabla f(x)$ and $\nabla f(x)^T b < 0$.

Preliminaries

- Enclose $\nabla f(\mathbf{x}(\mathbf{p})) \subseteq \mathbf{g}(\mathbf{p}), \ \nabla^2 f(\mathbf{x}(\mathbf{p})) \subseteq \mathbf{H}(\mathbf{p})$
- Condition

$$\exists b: Hb = g, g^Tb < 0$$

is equivalent to $g^T H^{-1}g < 0$ for each $g \in \mathbf{g}(\mathbf{p})$ and $H \in \mathbf{H}(\mathbf{p})$.

The method checks that

- every matrix in H(p) has at most one simple negative eigenvalue,
- we have $g^T H^{-1}g < 0$ for every $g \in \mathbf{g}(p)$, $H \in \mathbf{H}(p)$ and $p \in \mathbf{p}$.

Method Based on Crouzeix and Ferland

The method checks that

- every matrix in $\boldsymbol{H}(\boldsymbol{p})$ has at most one simple negative eigenvalue, (1)
- we have $g^T H^{-1}g < 0$ for every $g \in \mathbf{g}(p)$, $H \in \mathbf{H}(p)$ and $p \in \mathbf{p}$. (2)

Proposition

- It is NP-hard to check (1).
- It is NP-hard to check (2) even for functions of type $f(x) = \frac{1}{2}x^T Ax$.

Two tests for (1)

- Compute an enclosing interval λ_2 for the second smallest eigenvalue of the matrices in $\boldsymbol{H}(\boldsymbol{p})$ and then check whether $\underline{\lambda}_2 \geq 0$.
- Check for $\lambda_2(H_c) > 0$ and regularity of $\boldsymbol{H}(\boldsymbol{p})$.

Method Based on Crouzeix and Ferland

The method checks that

- every matrix in $\boldsymbol{H}(\boldsymbol{p})$ has at most one simple negative eigenvalue, (1)
- we have $g^T H^{-1}g < 0$ for every $g \in \mathbf{g}(p)$, $H \in \mathbf{H}(p)$ and $p \in \mathbf{p}$. (2)

Proposition

- It is NP-hard to check (1).
- It is NP-hard to check (2) even for functions of type $f(x) = \frac{1}{2}x^T Ax$.

Two tests for (2)

- Let y(p) be an affine form enclosure of the solution set of H(p)y = g(p). Check that $g(p)^T y(p) < 0$.
- Check that $det(D_c) < 0$ and $\boldsymbol{D}(\boldsymbol{p})$ is regular.

Numerical Experiments

Example (Random choices of H(p) and g(p))

n = dimension, d = radius of intervals, K = number of parameters. Success rate (in %):

			stan	dard in	nterval	appro	oach	parametric approach								
n	K	d	MP1	MP2	F	CF	С	MPa	MPb	CF1a	CF1b	CF2a	CF2b	С		
5	5	0.1	21.0	35.0	36.0	36.0	36.0	36.0	40.0	0.0	0.0	40.0	18.0	36.0		
10	5	0.1	7.0	30.0	37.0	37.0	27.0	27.0	58.0	0.0	0.0	53.0	28.0	27.0		
5	5	0.3	0.0	18.0	30.0	30.0	20.0	20.0	39.0	0.0	0.0	39.0	14.0	20.0		
10	5	0.3	0.0	5.0	9.0	10.0	3.0	3.0	52.0	0.0	0.0	39.0	20.0	3.0		
5	10	0.1	7.0	18.0	18.0	24.0	19.0	19.0	30.0	0.0	0.0	30.0	9.0	19.0		
10	10	0.1	0.0	19.0	24.0	24.0	13.0	13.0	61.0	0.0	0.0	51.0	29.0	13.0		
15	10	0.1	0.0	5.0	7.0	7.0	2.0	2.0	61.0	0.0	0.0	36.0	23.0	2.0		
5	10	0.3	0.0	4.0	12.0	18.0	8.0	8.0	31.0	0.0	0.0	31.0	14.0	8.0		
10	10	0.3	0.0	0.0	0.0	0.0	1.0	1.0	20.0	0.0	0.0	11.0	4.0	1.0		
15	10	0.3	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	2.0	1.0	0.0		
5	10	0.5	0.0	0.0	0.0	4.0	0.0	0.0	13.0	0.0	0.0	13.0	4.0	0.0		
10	10	0.5	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	1.0	0.0		

Parametric methods approx. 7 times slower.

Numerical Experiments

Example (Benchmark data (success rate in %))

standard interval approach parametric approach function n div conv MP1 MP2 F CF C MPa MPb CF1a CF1b CF2a CF2b													_		
function	n	dıv	conv	MP1	MP2	F	CF	С	MPa	MPb	CFla	CF1b	CF2a	CF2b	<u>C</u>
mhw4d	5	5	0.0	0	0	0	0	0	0	100	0	0	0	100	0
mhw4d	5	8	0.0	0	0	0	0	0	0	100	0	0	100	100	0
Colville	4	5	0.0	0	0	0	0	0	0	0	0	0	0	0	0
Colville	4	10	0.0	0	0	0.2	0.3	0	0	6.6	0	0	0	6.6	0
Rosenbrock	4	5	0.0	0	0	0.2	0.3	0	0	0	0	0	0	0	0
Rosenbrock	4	10	0.0	0	0	0.2	0.3	0	0	13.4	0	0	6.8	13.4	0
Rosenbrock	4	15	0.0	0	0	2.3	1.8	0	0	35.5	0	0	19.6	35.5	0
G&P	2	10	0.0	0	0	0	0	0	0	0	0	0	0	0	0
G&P	2	50	0.4	0	0	0	0	0.1	1.9	2.8	0	0	2.8	2.6	1.9
G&P	2	100	1.4	0	0	0	0	1.1	3.4	7.1	0	0	7.1	4.7	3.4
f5_Messine	3	10	0.0	0	0	0	0	0	0	0	0	0	0	0	0
f5_Messine	3	30	0.0	0	0	0.1	0.2	1.5	3.9	15.7	10.0	13.9	10.5	18.8	4.0
f5_Messine	3	40	0.0	0	0	3.2	4.4	4.6	6.7	17.9	14.2	20.6	14.3	24.8	7.2
6hum_came	2	10	0.0	0	0	0	0	0	0	0	0	0	0	0	0
6hum_came	2	50	31.1	4.1	11.3	32.1	36.9	26.6	35.0	56.2	2.1	2.1	56.2	53.2	35.0
6hum_came	2	100	43.1	10.9	16.7	45.2	50.8	40.9	48.6	62.2	5.2	5.2	62.2	60.1	48.6

Conclusion

Summary

• Compared to direct interval approach, parametric methods are significantly more efficient, but slightly slower.

Next steps?

- Pseudoconvex envelopes instead of convex envelopes?
- Some variation of the αBB method with pseudoconvex functions?

References

J. Crouzeix and J. A. Ferland.

Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons.

Math. Program., 23(1):193-205, 1982.

J.-P. Crouzeix.

Characterizations of Generalized Convexity and Generalized Monotonicity, A Survey.

In J.-P. Crouzeix et al., eds., Generalized Convexity, Generalized Monotonicity: Recent Results, pages 237–256. Springer, 1998.

J. A. Ferland.

Mathematical programming problems with quasi-convex objective functions.

Math. Program., 3(1):296-301, 1972.

P. Mereau and J.-G. Paquet.

Second order conditions for pseudo-convex functions.

SIAM J. Appl. Math., 27:131-137, 1974.