The Worst Case Finite Optimal Value in Interval Linear Programming

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

KOI 2018 The 17th International Conference on Operational Research Zadar, Croatia September 26–28, 2018

Introduction

Linear programming - three basic forms

$$f(A, b, c) \equiv \min c^T x$$
 subject to $Ax = b, x \ge 0$,
 $f(A, b, c) \equiv \min c^T x$ subject to $Ax \le b$,
 $f(A, b, c) \equiv \min c^T x$ subject to $Ax \le b, x \ge 0$.

Interval data (deterministic)

Interval matrix \boldsymbol{A} , interval vectors \boldsymbol{b} and \boldsymbol{c} . For example,

$$m{A} = egin{pmatrix} [2,3] & [-1,1] \ 4 & [1,2] \end{pmatrix}.$$

Interval linear programming

Family of linear programs with $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$, in short

$$f(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}) \equiv \min \boldsymbol{c}^T x$$
 subject to $\boldsymbol{A} x \stackrel{(\leq)}{=} \boldsymbol{b}, \ (x \geq 0).$

The three forms are not transformable between each other!

Optimal Value Range

Definition (Best and worst case optimal values)

$$\underline{f}:= \min \ f(A, b, c) \ ext{ subject to } \ A \in oldsymbol{A}, \ b \in oldsymbol{b}, \ c \in oldsymbol{c},$$

 $\overline{f} := \max f(A, b, c) \text{ subject to } A \in oldsymbol{A}, \ b \in oldsymbol{b}, \ c \in oldsymbol{c}.$

It may $\overline{f} = \infty$ due to infeasibility of some realization!

But sometimes we know a priori that the LP problems are feasible.

Example

Transportation problem.

Definition (Worst case finite optimal values)

 $\overline{f}_{\textit{fin}} := \max \ f(A, b, c) \ \text{ subject to } \ A \in \boldsymbol{A}, \ b \in \boldsymbol{b}, \ c \in \boldsymbol{c}, \ f(A, b, c) < \infty.$

Worst Case Finite Optimal Value: General Properties

Example ($\overline{f}_{fin} = \infty$)

Consider the interval LP problem

min $-x_1$ subject to $[0,1]x_2 = -1, x_1 - x_2 = 0, x_1, x_2 \le 0.$

By direct inspection, $\boldsymbol{f} = [1, \infty)$ and $\overline{f}_{fin} = \infty$.

Worst Case Finite Optimal Value: General Properties

Proposition

Let g(A, b, c) be the dual optimal value. Then $\overline{f}_{fin} = \max g(A, b, c)$ subject to $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$, $g(A, b, c) < \infty$.

Advantage

"max min" optimization problem is reduced to "max max" problem

$$\overline{f}_{fin} = \max \ b^T y \text{ subject to } y \in N(A^T, c), \ M(A, b) \neq \emptyset, \\ A \in \boldsymbol{A}, \ b \in \boldsymbol{b}, \ c \in \boldsymbol{c}.$$

Two Special Cases

Proposition (Interval objective function)

If A and b are real, then computation of \overline{f}_{fin} is a polynomial problem.

Proposition

If A and c are real, then checking $\overline{f}_{fin} > 0$ is NP-hard (for each type).

Consider the LP problem

$$f(A, b, c) = \min c^T x$$
 subject to $Ax = b, x \ge 0$.

A basis B is optimal if and only if

$$A_B^{-1}b \ge 0,$$
 (1a)
 $c_N^T - c_B^T A_B^{-1} A_N \ge 0^T.$ (1b)

Worst optimal value achievable at B

max $c_B^T A_B^{-1} b$ subject to (1), $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

Basis Approach with Real A

Worst optimal value achievable at B

$$\begin{array}{ll} \max \ c_B^T A_B^{-1} b \ \text{ subject to } \ A_B^{-1} b \ge 0, & (2a) \\ c_N^T - c_B^T A_B^{-1} A_N \ge 0^T & (2b) \\ b \in \boldsymbol{b}, \ c \in \boldsymbol{c}. & (2c) \end{array}$$

Corollary

If A is real, then $\overline{f}_{fin} < \infty$.

Proposition

If A is real, then solving (2) is NP-hard.

Proposition

If A, b are real or A, c are real, then solving (2) is polynomial.

Basis-by-basis inspection

- Inspect all possibly optimal bases one by one.
- Start with one possibly optimal basis and repeatedly inspect the neighboring bases.
 (The graph of possibly optimal bases is connected.)
- The set b decomposes into convex polyhedral regions related to possibly optimal bases.

Basis Approach with Real A and c – Example

Example

Consider the LP problem with data

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 & -1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} [3,5] \\ [2,4] \end{pmatrix}, \quad \boldsymbol{c} = \begin{pmatrix} 10 & 20 & 5 & 3 & 1 \end{pmatrix}^{T}.$$

Two possibly optimal bases, $B_1 = \{1,2\}$ and $B_2 = \{1,3\}$.

References

- R. Cerulli, C. D'Ambrosio, and M. Gentili.

Best and worst values of the optimal cost of the interval transportation problem.

In A. Sforza and C. Sterle, editors, *Optimization and Decision Science: Methodologies and Applications*, volume 217 of *Springer Proceedings in Mathematics & Statistics*, pages 367–374. Springer, Cham, 2017.

M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, and K. Zimmermann. *Linear Optimization Problems with Inexact Data*. Springer, New York, 2006.

M. Hladík.

Interval linear programming: A survey.

In Z. A. Mann, editor, *Linear Programming – New Frontiers in Theory and Applications*, chapter 2, pages 85–120. Nova Science Publishers, 2012.