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Introduction

Linear programming – three basic forms

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Interval data (deterministic)

Interval matrix A, interval vectors b and c. For example,

A =

(

[2, 3] [−1, 1]
4 [1, 2]

)

.

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c , in short

f (A,b, c) ≡ min c
T x subject to Ax

(≤)
= b, (x ≥ 0).

The three forms are not transformable between each other!
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Optimal Value Range

Definition (Best and worst case optimal values)

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c .

It may f = ∞ due to infeasibility of some realization!

But sometimes we know a priori that the LP problems are feasible.

Example

Transportation problem.

Definition (Worst case finite optimal values)

ffin := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c, f (A, b, c) < ∞.
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Worst Case Finite Optimal Value: General Properties

Example (ffin = ∞)

Consider the interval LP problem

min −x1 subject to [0, 1]x2 = −1, x1 − x2 = 0, x1, x2 ≤ 0.

−1

−2

−3

−4

−1−2−3−4 x1

x2

By direct inspection, f = [1,∞) and ffin = ∞.
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Worst Case Finite Optimal Value: General Properties

Proposition

Let g(A, b, c) be the dual optimal value. Then

ffin = max g(A, b, c) subject to A ∈ A, b ∈ b, c ∈ c, g(A, b, c) < ∞.

Advantage

“maxmin” optimization problem is reduced to “maxmax” problem

ffin = max bT y subject to y ∈ N(AT
, c), M(A, b) 6= ∅,

A ∈ A, b ∈ b, c ∈ c.
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Two Special Cases

Proposition (Interval objective function)

If A and b are real, then computation of ffin is a polynomial problem.

For constrains Ax = b, x ≥ 0:

ffin = max bT y subject to Ax = b, x ≥ 0, AT y ≤ c ,

For constrains Ax ≤ b:

ffin = max bT y subject to Ax ≤ b, c ≤ AT y ≤ c , y ≤ 0.

For constrains Ax ≤ b, x ≥ 0:

ffin = max bT y subject to Ax ≤ b, x ≥ 0, ATy ≤ c , y ≤ 0.

Proposition

If A and c are real, then checking ffin > 0 is NP-hard (for each type).
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Basis Approach

Consider the LP problem

f (A, b, c) = min cT x subject to Ax = b, x ≥ 0.

A basis B is optimal if and only if

A−1
B

b ≥ 0, (1a)

cTN − cTB A−1
B

AN ≥ 0T . (1b)

Worst optimal value achievable at B

max cTB A−1
B

b subject to (1), A ∈ A, b ∈ b, c ∈ c.
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Basis Approach with Real A

Worst optimal value achievable at B

max cTB A−1
B

b subject to A−1
B

b ≥ 0, (2a)

cTN − cTB A−1
B

AN ≥ 0T (2b)

b ∈ b, c ∈ c. (2c)

Corollary

If A is real, then ffin < ∞.

Proposition

If A is real, then solving (2) is NP-hard.

Proposition

If A, b are real or A, c are real, then solving (2) is polynomial.
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Basis Approach with Real A and c

Basis-by-basis inspection

1 Inspect all possibly optimal bases one by one.

2 Start with one possibly optimal basis and repeatedly inspect the
neighboring bases.
(The graph of possibly optimal bases is connected.)

3 The set b decomposes into convex polyhedral regions related to
possibly optimal bases.
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Basis Approach with Real A and c – Example

Example

Consider the LP problem with data

A =

(

1 2 0 −1 −1
1 1 1 1 0

)

, b =

(

[3, 5]
[2, 4]

)

, c =
(

10 20 5 3 1
)T

.

Two possibly optimal bases, B1 = {1, 2} and B2 = {1, 3}.

2

4

6

−2

2 4 6 8 10 120

N(AT
, c)

y1

y2

y1

y2

b

Dual LP problem.

b1 = b2

b1 = 2b2
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b

b1
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∅

B1

B2

b consists of basis stable regions.

10 / 11



References

R. Cerulli, C. D’Ambrosio, and M. Gentili.
Best and worst values of the optimal cost of the interval
transportation problem.
In A. Sforza and C. Sterle, editors, Optimization and Decision Science:
Methodologies and Applications, volume 217 of Springer Proceedings
in Mathematics & Statistics, pages 367–374. Springer, Cham, 2017.
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