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P-Completeness

P-complete problems

@ Informally: the hardest problems in P (polynomial); difficult to
parallelize effectively

@ More formally:

o NC is the set of problems that can be solved in polylogarithmic time
with a polynomial number of processors

@ P-complete problems problems in P and every problem in P can be
reduced to it by an NC-reduction

o It is believed that NC # P and the P-complete problems lie outside NC)

Examples of P-complete problems
@ Linear programming (even max flow, zero-sum games)
@ Solvability of linear inequalities
° ...




Interval matrix
An interval matrix

A=[AA={AcR™"| A< A<A}

The center and radius matrices

A = %(Z +A), AP .= %(Z — A).
The set of all m x n interval matrices: TR™*".

A symmetric interval matrix
A ={AcA:A=AT}
Without loss of generality assume that A= AT, A=A", and AS # 0.




Parametric interval system

Consider a parametric interval linear system

A(p)x = b(p),

in which parameters have a linear structure

K K
Ap) =Y AMp., b(p) =D bWp.
k=1 k=1
Herein,
o AW . AK) e R and b .. p(K) € R are fixed,
® parameters pi, ..., px come from interval domains py,...,px € IR. )
Remark

A symmetric interval matrix is a special linear parametric matrix

A(P):P1<(1) 8>+p2<$ (1)>+p3<8 2)




Parametric Interval Linear Systems — Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.

The stiffnesses s;; of bars are uncertain.

The displacements d of the nodes, are solutions of the system Kd = f,
where f is the vector of forces.
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Parametric Linear Interval Systems — Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.

The stiffnesses s;; of bars are uncertain.

The displacements d of the nodes, are solutions of the system Kd = f,
where f is the vector of forces.
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Problem Formulation

Standard, symmetric and parametric solution set
Standard solution set

> ={xeR",JAc Adbe b: Ax = b}.
Parametric solution set
Ypar ={x €R";, 3p e p: A(p)x = b(p)}.
Symmetric solution set
Yom=1{x€R, IpcpIAcA:Ax=b(p), A=AT}.
Symmetric solution set with no dependencies in the right-hand side

Yom={x€R" IAcAdbeb: Ax=b, A=AT}.

Problem formulation
Given x* € R", how hard it is to check the following?

x*€Y, x*€Xpy, X' Ergym x"EX,
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Standard Interval Systems

Theorem (Oettli-Prager, 1964)
A point x € R" solves Ax = b (i.e, x € ) iff
|A°x — b| < AB|x| + b2,

Corollary

Deciding x* € X is a strongly polynomial problem and in NC.
(i.e., polynomial in the dimension, not in the input size)




Parametric Interval Systems with Linear Dependencies

Characterization of A(p)x = b(p), p€ p
@ No simple description is known.

@ Description of X, by possibly double exponential number of
nonlinear inequalities by using Fourier—Motzkin elimination
(Alefeld, Kreinovich, Mayer, 2003; Popova, 2015;...).

@ “Infinite” characterization by Hladik (2012)

K
yT(A(P)x = b(p)) <> prly T (AWx — b)|, vy e R".
k=1

Theorem (Popova (2009))

If x € X par, then it solves

K
A(p)x — b(p°)| < Y p2IAK x — pK)|.
k
k=1

The converse holds if no interval parameter is in more than one equation.

1
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Parametric Interval Systems with Linear Dependencies

Theorem
Checking x* € X par is a P-complete problem.

Proof.

By reduction from checking solvability of a linear system Ax = b, x > 0,
which is P-complete.

The condition x* € X, is equivalent to solvability

K

K
> (AWp)x* = " bHpy,  p € py
=1 =1

in variables p1, ..., pk-. ]
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Symmetric Solution Set

Recall the definition

Yoym={x€R"; IpcpIAcA:Ax=b(p), A=AT}.

Theorem

Checking x* € Lsym is a P-complete problem, even on a subclass of
problems where the constraint matrix is tridiagonal with zero diagonal, and
the right-hand side vector has at most one parameter in each entry.

v

Proof.

Again by reduction from checking solvability of a linear system Ax = b,
x> 0. O]

v
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Simple Symmetric Solution Set

Symmetric solution set with no dependencies in the right-hand side

={xcR"3JAcAIbchb:Ax=b A=AT},

sym

About
@ 1986: Neumaier's letter to Rohn

@ 1990's: Alefeld, Kreinovich, Mayer:
Fourier—Motzkin elimination applied in each orthant.

@ 2008: Hladik: explicit description (r = —A°x + b°)
A8 x|+ b > |1,

Z rIXI(pI qi)

Vp’ qce {0’ 1}n \ {On’ n}’ P <lex 9
@ 2012, 2015: Mayer: further simplification

n

Z U|X,XJ |+Zb [xi(pi + qi)| >

ij=1
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Simple Symmetric Solution Set

Symmetric solution set with no dependencies in the right-hand side J

Tim={x€R, 3Ac Adbeb: Ax=b, A= AT},

Open problem

Is the problem of checking x* & Z:ym P-complete? J
However, the problem of finding the “best” certificate is P-complete. J
Theorem

The following problem is P-complete: Given A € R"™*", b € IR",
symmetric F € R™", and x* € R", among symmetric matrices A € A for
which Ax* € b, find the matrix for which tr(AF) is the largest possible.
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Consequences and Conclusion

@ Testing x* € Zpar or x* € Zsym is a polynomial problem, but cannot
be done “very” fast and is hard to parallelize.

@ The same for checking x C Zpar or x N Zpa, = 0.

@ But this is a typical task in CSP when solved by Branch & Prune.

o
>
[ =T

@ Therefore nor the basic tasks (pruning boxes etc.) in CSP can be
done ‘very effectively”.
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