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P-Completeness

P-complete problems

Informally: the hardest problems in P (polynomial); difficult to
parallelize effectively

More formally:

NC is the set of problems that can be solved in polylogarithmic time
with a polynomial number of processors
P-complete problems problems in P and every problem in P can be
reduced to it by an NC-reduction
It is believed that NC 6= P and the P-complete problems lie outside NC

Examples of P-complete problems

Linear programming (even max flow, zero-sum games)

Solvability of linear inequalities

. . .
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Notation

Interval matrix

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

A symmetric interval matrix

AS := {A ∈ A : A = AT}.

Without loss of generality assume that A = AT , A = A
T
, and AS 6= ∅.
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Notation

Parametric interval system

Consider a parametric interval linear system

A(p)x = b(p),

in which parameters have a linear structure

A(p) =
K
∑

k=1

A(k)pk , b(p) =
K
∑

k=1

b(k)pk .

Herein,

A(1)
, . . . ,A(K) ∈ R

n×n and b(1), . . . , b(K) ∈ R
n are fixed,

parameters p1, . . . , pK come from interval domains p1, . . . ,pK ∈ IR.

Remark

A symmetric interval matrix is a special linear parametric matrix

A(p) = p1

(

1 0
0 0

)

+ p2

(

0 1
1 0

)

+ p3

(

0 0
0 1

)

.
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Parametric Interval Linear Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

f

1

2

3

4

5
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Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.
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Problem Formulation

Standard, symmetric and parametric solution set

Standard solution set

Σ = {x ∈ R
n; ∃A ∈ A ∃b ∈ b : Ax = b}.

Parametric solution set

Σpar = {x ∈ R
n; ∃p ∈ p : A(p)x = b(p)}.

Symmetric solution set

Σsym = {x ∈ R
n; ∃p ∈ p ∃A ∈ A : Ax = b(p), A = AT}.

Symmetric solution set with no dependencies in the right-hand side

Σ∗

sym = {x ∈ R
n; ∃A ∈ A ∃b ∈ b : Ax = b, A = AT}.

Problem formulation

Given x∗ ∈ R
n, how hard it is to check the following?

x∗ ∈ Σ, x∗ ∈ Σpar , x∗ ∈ Σsym, x∗ ∈ Σ∗

sym.
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Standard Interval Systems

Theorem (Oettli–Prager, 1964)

A point x ∈ R
n solves Ax = b (i.e., x ∈ Σ) iff

|Acx − bc | ≤ A∆|x |+ b∆.

Corollary

Deciding x∗ ∈ Σ is a strongly polynomial problem and in NC.
(i.e., polynomial in the dimension, not in the input size)
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Parametric Interval Systems with Linear Dependencies

Characterization of A(p)x = b(p), p ∈ p

No simple description is known.

Description of Σpar by possibly double exponential number of
nonlinear inequalities by using Fourier–Motzkin elimination
(Alefeld, Kreinovich, Mayer, 2003; Popova, 2015;. . . ).

“Infinite” characterization by Hlad́ık (2012)

yT (A(pc)x − b(pc)) ≤
K
∑

k=1

p∆k
∣

∣yT (A(k)x − b(k))
∣

∣

, ∀y ∈ R
n
.

Theorem (Popova (2009))

If x ∈ Σpar , then it solves

|A(pc)x − b(pc)| ≤
K
∑

k=1

p∆k |A(k)x − b(k)|.

The converse holds if no interval parameter is in more than one equation.
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Parametric Interval Systems with Linear Dependencies

Theorem

Checking x∗ ∈ Σpar is a P-complete problem.

Proof.

By reduction from checking solvability of a linear system Ax = b, x ≥ 0,
which is P-complete.

The condition x∗ ∈ Σpar is equivalent to solvability

K
∑

k=1

(A(k)pk)x
∗ =

K
∑

k=1

b(k)pk , pk ∈ pk

in variables p1, . . . , pK .
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Symmetric Solution Set

Recall the definition

Σsym = {x ∈ R
n; ∃p ∈ p ∃A ∈ A : Ax = b(p), A = AT}.

Theorem

Checking x∗ ∈ Σsym is a P-complete problem, even on a subclass of
problems where the constraint matrix is tridiagonal with zero diagonal, and
the right-hand side vector has at most one parameter in each entry.

Proof.

Again by reduction from checking solvability of a linear system Ax = b,
x ≥ 0.
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Simple Symmetric Solution Set

Symmetric solution set with no dependencies in the right-hand side

Σ∗

sym = {x ∈ R
n; ∃A ∈ A ∃b ∈ b : Ax = b, A = AT},

About

1986: Neumaier’s letter to Rohn

1990’s: Alefeld, Kreinovich, Mayer:
Fourier–Motzkin elimination applied in each orthant.

2008: Hlad́ık: explicit description (r ≡ −Acx + bc)

A∆|x |+ b∆ ≥ |r |,
n

∑

i ,j=1

a∆ij |xixj(pi − qj)|+
n

∑

i=1

b∆i |xi(pi + qi )| ≥

∣

∣

∣

∣

∣

n
∑

i=1

rixi (pi − qi)

∣

∣

∣

∣

∣

∀p, q ∈ {0, 1}n \ {0n, 1n}, p≺lex q

2012, 2015: Mayer: further simplification
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Simple Symmetric Solution Set

Symmetric solution set with no dependencies in the right-hand side

Σ∗

sym = {x ∈ R
n; ∃A ∈ A ∃b ∈ b : Ax = b, A = AT},

Open problem

Is the problem of checking x∗ ∈ Σ∗

sym P-complete?

However, the problem of finding the “best” certificate is P-complete.

Theorem

The following problem is P-complete: Given A ∈ R
n×n, b ∈ IR

n,
symmetric F ∈ R

n×n, and x∗ ∈ R
n, among symmetric matrices A ∈ A for

which Ax∗ ∈ b, find the matrix for which tr(AF ) is the largest possible.
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Consequences and Conclusion

Testing x∗ ∈ Σpar or x∗ ∈ Σsym is a polynomial problem, but cannot
be done “very” fast and is hard to parallelize.

The same for checking x ⊆ Σpar or x ∩Σpar = ∅.

But this is a typical task in CSP when solved by Branch & Prune.

Therefore nor the basic tasks (pruning boxes etc.) in CSP can be
done “very effectively”.
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