Tolerances, Robustness and Parametrization of Matrix Properties Related to Optimization Problems

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

ParaoptXI

11th International Conference on Parametric Optimization and Related Topics, Prague, September 19–22, 2017

Outline

Matrix properties

- positive definiteness (relates to convexity of a function)
- P-matrix property (unique solvability of LCP)
- M-matrix property (Leontief's input-output model)
- H-matrix property
- total positivity
- inverse nonnegativity

Problem I statement

Given $A \in \mathbb{R}^{n \times n}$, determine the radius of stability of a matrix property for a matrix norm (= distance to nearest violated matrix).

Problem II statement

Stability in the direction $A + \delta \tilde{A}$ with a parameter δ .

Matrix norms

Vector *p*-norms:
$$||x||_p := \left(\sum_{i=1}^n |x|_i^p\right)^{\frac{1}{p}}, \ p \ge 1.$$

Particular matrix norms

• The subordinate matrix norm

$$|A\|_{\alpha,\beta} := \max_{\|x\|_{\alpha}=1} \|Ax\|_{\beta}$$

• The induced *p*-norm

$$\|A\|_p := \max_{\|x\|_p=1} \|Ax\|_p$$

Spectral norm (induced 2-norm)

$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2 = \sigma_{\max}(A).$$

• Frobenius norm $||A||_F := \sqrt{\sum_{i,j} a_{ij}^2}$

• max-norm $\|A\|_{\max} := \max_{i,j} |a_{ij}|$

Properties of matrix norms

- (P1) consistent norm: if $||AB|| \le ||A|| \cdot ||B||$ for every $A, B \in \mathbb{R}^{n \times n}$ (for induced norms, Frobenius, but not for max-norm)
- (P2) $||I_n|| = 1$ (for induced norms and max-norm, not for Frobenius)
- (P3) $||A'|| \le ||A||$ whenever A' is a submatrix of A (for induced *p*-norms, Frobenius and max-norm)

(P4)
$$\|e_i e_j^T\| = 1 \quad \forall i, j$$

(for induced *p*-norms, Frobenius and max-norm

Regularity radius

Definition

Regularity radius of $A \in \mathbb{R}^{n \times n}$ is the distance to the nearest singular matrix

$$\mathsf{r}(A) := \min\{\|A - B\| : B \text{ is singular}\}.$$

Particular cases

• For the spectral, Frobenius and some orthogonally invariant norms,

$$\mathsf{r}(A) = \sigma_{\min}(A)$$

• For any induced matrix norm (Gastinel-Kahan theorem),

$$r(A) = \|A^{-1}\|^{-1}$$

• For the max-norm,

$$\mathsf{r}(A) = \|A^{-1}\|_{\infty,1}^{-1} = \frac{1}{\max_{y,z \in \{\pm 1\}^n} y^T A^{-1} z}$$

Its computation is NP-hard SDP approximation

[Poljak and Rohn, 1993] [Hartman and Hladík, 2016]

Positive definiteness

Definition

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Radius of positive definiteness of A is

 $\delta^* := \sup\{\delta \ge 0 \colon A + A' \text{ is positive definite } \forall A' : A' = A'^T, \ \|A'\| < \delta\}.$

Theorem

For every consistent matrix norm satisfying (P2) (i.e., $||I_n|| = 1$) we have $\delta^* = \lambda_{\min}(A)$, the smallest eigenvalue of A.

For max-norm

- co-NP-hard to check $\delta^*>1,$
- $\delta^* \geq \frac{1}{n}\lambda_{\min}(A)$,

•
$$\delta^* = \min_{y \in \{\pm 1\}^n} \frac{1}{y^T A^{-1} y}$$
,

• If A is inverse nonnegative, then $\delta^* = \frac{1}{e^T A^{-1} e}$.

P-matrix property

Definition

 $A \in \mathbb{R}^{n \times n}$ is a P-matrix if all its principal minors are positive.

• It guarantees a unique solution for each q of the LCP

$$q + Ax \ge 0, \ x \ge 0, \ (q + Ax)^T x = 0$$

[Cottle, Pang, and Stone, 2009; Murty, 1988]

• Checking P-matrix property is co-NP-hard

[Coxson, 1994]

- Efficiently recognizable subclasses:
 - positive definite matrices,
 - M-matrices,
 - H-matrices with positive diagonal,
 - or totally positive matrices.

P-matrix radius of a P-matrix A

 $\delta^* := \sup\{\delta \ge 0 \colon A + A' \text{ is an } \mathsf{P}\text{-matrix } \forall A' : \|A'\| < \delta\}.$

P-matrix property

Theorem

For any matrix norm we have

 $\delta^* = \min\{r(\hat{A}) : \hat{A} \text{ is a principal submatrix of } A\}.$

In particular, for the spectral or Frobenius norm we have

 $\delta^* = \min\{\sigma_{\min}(\hat{A}) : \hat{A} \text{ is a principal submatrix of } A\}.$

Theorem

Suppose A is an symmetric positive definite or an M-matrix ($a_{ij} \leq 0$, $i \neq j$, and $A^{-1} \geq 0$). For the spectral or Frobenius norm we have

$$\delta^* = \sigma_{\min}(A).$$

Theorem

Suppose A is an M-matrix. For the max-norm we have

$$\delta^* = \frac{1}{e^T A^{-1} e}.$$

M-matrix property

Definition

 $A \in \mathbb{R}^{n \times n}$ is an M-matrix if $a_{ij} \leq 0$ for every $i \neq j$ and $A^{-1} \geq 0$ (or, Av > 0 for certain v > 0). [Horn and Johnson, 1991]

- sub-class of P-matrices
- stability of Leontief's input-output analysis in economic systems, and others

M-matrix radius of an M-matrix A

 $\delta^* := \sup\{\delta \ge 0 \colon A + A' \text{ is an M-matrix } \forall A' : \|A'\| < \delta\}.$

Example

Consider the identity matrix $A = I_n$ and the spectral norm:

- the P-matrix radius is 1
- the M-matrix radius is 0

M-matrix property

Theorem

For every matrix norm satisfying (P3) and (P4) we have

$$\delta^* = \min_{i \neq j} \{-a_{ij}, \mathbf{r}(A)\}.$$

In particular, for the spectral or Frobenius norm, we have

$$\delta^* = \min_{i \neq j} \{ -a_{ij}, \sigma_{\min}(A) \}.$$

Max-norm

- The worst case is $A \delta E$, where E consists of ones.
- δ^* is maximal such that $A \delta E$ is an M-matrix for all $\delta \in [0, \delta^*)$.
- Simple parametrization (linear constraints by Sherman–Morrison formula):

 $(A - \delta E)_{ij} \leq 0, \ i \neq j, \text{ and } (A - \delta E)^{-1} \geq 0.$

Definition

 $A \in \mathbb{R}^{n \times n}$ is totally positive if the determinants of all submatrices are positive.

- Sub-class of P-matrices.
- Only initial submatrices A⁽¹⁾,..., A^(n²) needed to check: rows are indexed by {1,..., k} and columns by {l,..., l + k 1} or vice versa. [Fallat and Johnson, 2011]

Totally positive radius of A

$$\delta^* := \sup\{\delta \ge 0 \colon A + A' \text{ is totally positive } \forall A' : \|A'\| < \delta\}.$$

Theorem

We have
$$\delta^* = \min_{i=1,\dots,n^2} r(A^{(i)}).$$

In particular, for the spectral or Frobenius norm, $\delta^* = \min_{i=1,...,n^2} \sigma_{\min}(A^{(i)})$.

Max-norm

• The worst case is
$$A - \delta s s^T$$
 or $A + \delta s s^T$, where $s := (1, -1, 1, -1, \dots)^T$ [Garloff, 1982]

• δ^* is thus computed by simple parametrization (Sherman–Morrison formula)

Inverse nonnegativity

Definition

 $A \in \mathbb{R}^{n \times n}$ is inverse nonnegative if $A^{-1} \ge 0$.

Inverse nonnegativity radius of A

 $\delta^* := \sup\{\delta \ge 0 \colon A + A' \text{ is inverse nonnegative } \forall A' : \|A'\| < \delta\}.$

Theorem

We have
$$\delta^* = \min_{i,j=1,...,n} \{r(A), r(A^{ij})\}$$
.
In particular, for the spectral or Frobenius norm,
 $\delta^* = \min_{i,j=1,...,n} \{\sigma_{\min}(A), \sigma_{\min}(A^{ij})\}$.

Max-norm

• The worst case is $A - \delta E$ or $A + \delta E$

[Kuttler, 1971]

• δ^* is thus computed by simple parametrization (Sherman–Morrison formula)

Conclusion

- stability radius for diverse matrix properties related to optimization
- typically reduced to several problems of regularity radius
- often for many norms tractable (spectral of Frobenius norm), sometimes NP-hard (max-norm)

References

- Cottle, R. W., Pang, J.-S., and Stone, R. E. (2009). The Linear Complementarity Problem. SIAM, Philadelphia, PA, revised ed. of the 1992 original edition.
- Fallat, S. M. and Johnson, C. R. (2011). Totally Nonnegative Matrices. Princeton University Press, Princeton, NJ.
- Hartman, D. and Hladík, M. (2016). Tight bounds on the radius of nonsingularity. volume 9553 of *LNCS*, pages 109–115. Springer.
- Horn, R. A. and Johnson, C. R. (1991).
 Topics in matrix analysis.
 Cambridge University Press.
- Poljak, S. and Rohn, J. (1993).
 Checking robust nonsingularity is NP-hard.
 Math. Control Signals Syst., 6(1):1–9.