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Outline

Matrix properties

positive definiteness (relates to convexity of a function)

P-matrix property (unique solvability of LCP)

M-matrix property (Leontief’s input-output model)

H-matrix property

total positivity

inverse nonnegativity

Problem I statement

Given A ∈ R
n×n, determine the radius of stability of a matrix property for

a matrix norm (=distance to nearest violated matrix).

Problem II statement

Stability in the direction A+ δÃ with a parameter δ.

2 / 15



Matrix norms

Vector p-norms: ‖x‖p :=
(
∑n

i=1 |x |
p
i

)
1
p , p ≥ 1.

Particular matrix norms

The subordinate matrix norm

‖A‖α,β := max
‖x‖α=1

‖Ax‖β

The induced p-norm

‖A‖p := max
‖x‖p=1

‖Ax‖p

Spectral norm (induced 2-norm)

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σmax(A).

Frobenius norm ‖A‖F :=
√

∑

i ,j a
2
ij

max-norm ‖A‖max := maxi ,j |aij |
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Matrix norms

Properties of matrix norms

(P1) consistent norm: if ‖AB‖ ≤ ‖A‖ · ‖B‖ for every A,B ∈ R
n×n

(for induced norms, Frobenius, but not for max-norm)

(P2) ‖In‖ = 1
(for induced norms and max-norm, not for Frobenius)

(P3) ‖A′‖ ≤ ‖A‖ whenever A′ is a submatrix of A
(for induced p-norms, Frobenius and max-norm)

(P4) ‖eie
T
j ‖ = 1 ∀i , j

(for induced p-norms, Frobenius and max-norm)
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Regularity radius

Definition

Regularity radius of A ∈ R
n×n is the distance to the nearest singular matrix

r(A) := min{‖A − B‖ : B is singular}.

Particular cases

For the spectral, Frobenius and some orthogonally invariant norms,

r(A) = σmin(A)

For any induced matrix norm (Gastinel–Kahan theorem),

r(A) = ‖A−1‖−1

For the max-norm,

r(A) = ‖A−1‖−1
∞,1 =

1

maxy ,z∈{±1}n yTA−1z

Its computation is NP-hard [Poljak and Rohn, 1993]

SDP approximation [Hartman and Hlad́ık, 2016]
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Positive definiteness

Definition

Let A ∈ R
n×n be symmetric positive definite. Radius of positive

definiteness of A is

δ∗ := sup{δ ≥ 0 : A+ A′ is positive definite ∀A′ : A′ = A′T , ‖A′‖ < δ}.

Theorem

For every consistent matrix norm satisfying (P2) (i.e., ‖In‖ = 1) we have
δ∗ = λmin(A), the smallest eigenvalue of A.

For max-norm

co-NP-hard to check δ∗ > 1,

δ∗ ≥ 1
n
λmin(A),

δ∗ = miny∈{±1}n
1

yTA−1y
,

If A is inverse nonnegative, then δ∗ = 1
eTA−1e

.
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P-matrix property

Definition

A ∈ R
n×n is a P-matrix if all its principal minors are positive.

It guarantees a unique solution for each q of the LCP

q + Ax ≥ 0, x ≥ 0, (q + Ax)T x = 0

[Cottle, Pang, and Stone, 2009; Murty, 1988]

Checking P-matrix property is co-NP-hard [Coxson, 1994]

Efficiently recognizable subclasses:

positive definite matrices,
M-matrices,
H-matrices with positive diagonal,
or totally positive matrices.

P-matrix radius of a P-matrix A

δ∗ := sup{δ ≥ 0 : A+ A′ is an P-matrix ∀A′ : ‖A′‖ < δ}.
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P-matrix property

Theorem

For any matrix norm we have

δ∗ = min{r(Â) : Â is a principal submatrix of A}.

In particular, for the spectral or Frobenius norm we have

δ∗ = min{σmin(Â) : Â is a principal submatrix of A}.

Theorem

Suppose A is an symmetric positive definite or an M-matrix (aij ≤ 0, i 6= j ,
and A−1 ≥ 0). For the spectral or Frobenius norm we have

δ∗ = σmin(A).

Theorem

Suppose A is an M-matrix. For the max-norm we have

δ∗ =
1

eTA−1e
.
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M-matrix property

Definition

A ∈ R
n×n is an M-matrix if aij ≤ 0 for every i 6= j and A−1 ≥ 0 (or,

Av > 0 for certain v > 0). [Horn and Johnson, 1991]

sub-class of P-matrices

stability of Leontief’s input-output analysis in economic systems,
and others

M-matrix radius of an M-matrix A

δ∗ := sup{δ ≥ 0 : A+ A′ is an M-matrix ∀A′ : ‖A′‖ < δ}.

Example

Consider the identity matrix A = In and the spectral norm:

the P-matrix radius is 1

the M-matrix radius is 0
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M-matrix property

Theorem

For every matrix norm satisfying (P3) and (P4) we have

δ∗ = mini 6=j{−aij , r(A)}.

In particular, for the spectral or Frobenius norm, we have

δ∗ = mini 6=j{−aij , σmin(A)}.

Max-norm

The worst case is A− δE , where E consists of ones.

δ∗ is maximal such that A− δE is an M-matrix for all δ ∈ [0, δ∗).

Simple parametrization (linear constraints by Sherman–Morrison
formula):

(A− δE )ij ≤ 0, i 6= j , and (A− δE )−1 ≥ 0.
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Total positivity

Definition

A ∈ R
n×n is totally positive if the determinants of all submatrices are

positive.

Sub-class of P-matrices.

Only initial submatrices A(1), . . . ,A(n2) needed to check: rows are
indexed by {1, . . . , k} and columns by {ℓ, . . . , ℓ+ k − 1} or vice versa.

[Fallat and Johnson, 2011]

Totally positive radius of A

δ∗ := sup{δ ≥ 0 : A+ A′ is totally positive ∀A′ : ‖A′‖ < δ}.
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Total positivity

Theorem

We have δ∗ = min
i=1,...,n2

r(A(i)).

In particular, for the spectral or Frobenius norm, δ∗ = min
i=1,...,n2

σmin(A
(i)).

Max-norm

The worst case is A− δssT or A+ δssT , where
s := (1,−1, 1,−1, . . . )T [Garloff, 1982]

δ∗ is thus computed by simple parametrization (Sherman–Morrison
formula)
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Inverse nonnegativity

Definition

A ∈ R
n×n is inverse nonnegative if A−1 ≥ 0.

Inverse nonnegativity radius of A

δ∗ := sup{δ ≥ 0 : A+ A′ is inverse nonnegative ∀A′ : ‖A′‖ < δ}.

Theorem

We have δ∗ = mini ,j=1,...,n{r(A), r(A
ij )}.

In particular, for the spectral or Frobenius norm,
δ∗ = mini ,j=1,...,n{σmin(A), σmin(A

ij)}.

Max-norm

The worst case is A− δE or A+ δE [Kuttler, 1971]

δ∗ is thus computed by simple parametrization (Sherman–Morrison
formula)
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Conclusion

Conclusion

stability radius for diverse matrix properties related to optimization

typically reduced to several problems of regularity radius

often for many norms tractable (spectral of Frobenius norm),
sometimes NP-hard (max-norm)
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