Recognizing Pseudoconvexity of a Function on an

Interval Domain

Milan Hladik

Department of Applied Mathematics
Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic
http://kam.mff.cuni.cz/~hladik/

ODAM 2017
Olomoucian Days of Applied Mathematics, Olomouc
May 31 — June 2, 2017


http://kam.mff.cuni.cz/~hladik/

Pseudoconvexity

Motivation

Convexity has many nice properties in the context of optimization.
What about its generalizations?

Definition
Let /: R” — R be twice differentiable and S C R"” an open convex set.
Then f(x) is pseudoconvex on S if for every x,y € S we have

Vf(X)T(y —x)>0 = f(y)>f(x).

Key Properties
Minimizing pseudoconvex objective functions on convex feasible sets,
@ each stationary point is a global minimum,

@ each local minimum is a global minimum,

@ the optimal solution set is convex.




[llustration

Convex function

y)\




[llustration

Pseudoconvex function

y)\

—_




[llustration

Quasiconvex function

y)\




Pseudoconvexity

Problem Formulation
Given a box x = [x,X] in R" and differentiable f: R” — R.

The question: s f(x) pseudoconvex on x?

Why testing pseudoconvexity on a box?

In global optimization, feasible sub-domains have often the form of boxes.
Verifying pseudoconvexity can help to process a given box (for example, by
local search).
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Theorem (Ahmadi et al., 2013)

Deciding pseudoconvexity is NP-hard on a class of quartic polynomials.




Pseudoconvexity Characterizations

Theorem (Mereau and Paquet, 1974)

The function f(x) is pseudoconvex on x if there is &« > 0 such that
Ma(x) == V3f(x) + aVF(x)VF(x)T

is positive semidefinite for all x € x.

Denote
. 0 VEx)T
bl = <Vf(x) v2f(x)) ’
and by D(x), we denote the principal leading submatrix of size r.
Theorem (Ferland, 1972)

The function f(x) is pseudoconvex on x if det(D(x),) < 0 for every
r=2,...,n+1 and for all x € x.




Pseudoconvexity Characterizations

Theorem (Crouzeix and Ferland, 1982)

The function f(x) is pseudoconvex on x if for each x € x either V2f(x) is
positive semidefinite, or V>f(x) has one simple negative eigenvalue and
there is b € R" such that V2f(x)b = Vf(x) and Vf(x)"b < 0.

Theorem (Crouzeix, 1998)

The function f(x) is pseudoconvex on x if for each x € x the matrix D(x)
is nonsingular and has exactly one simple negative eigenvalue.
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Theorem (Crouzeix, 1998)

The function f(x) is pseudoconvex on x if for each x € x and every y # 0
such that Vf(x)Ty = 0 we have y T V2f(x)y > 0.
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Interval Methods for Testing Pseudoconvexity

Interval Enclosures

Let H € IR"™" (interval matrix) and g € IR" (interval vector) such that
V3f(x) € H Vxe€ x,
Vf(x)cg Vxex.

@ Such interval enclosures of the Hessian matrix and the gradient can be
computed, e.g., by interval arithmetic using automatic differentiation.
o If every H € H is positive semidefinite, then f(x) is convex and we

are done. Therefore, we focus on problems such that not every
H € H is positive semidefinite.

We will use the symmetric interval matrix




Methods Based on Mereau and Paquet

Mereau and Paquet suggest to verify positive semidefiniteness of matrices
Mo(H,g) =H+agg’, HeH gecg

for a suitable o > 0.

Direct Evaluation (MP1)
By interval arithmetic and for a suitable o > 0 evaluate
M(a) = H +ogg’.
Then check whether M(«) is positive semidefinite.
Problems:
@ Choice of a.

@ Checking positive semidefiniteness of interval matrices is co-NP-hard.

@ This approach does not utilize the structure of M,(x).

Sufficient condition is: A,(M(a).) > p(M(a)p)-
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Methods Based on Mereau and Paquet

Theorem
We have that M, (H, g) is positive semidefinite for all H € H and g € g if

xT(He + ag gl )x — |x|THalx| — 2alg] x|gk |x| >0, Vx€R"

Theorem
We have that M, (H, g) is positive semidefinite for all H € H and g € g if
H. — diag(z)Ha diag(z) + a(gcgcT — gcgl diag(z) — diag(z)gAgCT)

is positive semidefinite for every z € {£1}".

Structure-Oriented Method (MP2)

Based on the above exponential formula.
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Method Based on Ferland

Ferland suggests to check that for each symmetric D € D and for each
r=2,...,n+1 we have det(D,) < 0.

Theorem
It is co-NP-hard to check whether det(D) < O for every symmetric D € D.

The Method (F)
Check

det((D;).) <0 and p(|(D/)7(Dr)a) <1
foreach r=2,...,n+ 1.
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Method Based on Crouzeix and Ferland

For H symmetric, the condition that there is b such that Hb = g,
g"h < 0 is equivalent to

et (0 &
det(D) = det (g H) < 0.

This gives us an equivalent condition:

Theorem

The function f(x) is pseudoconvex on x if for each symmetric D € D we
have det(D) < 0, and each symmetric H € H is nonsingular and has at
most one simple negative eigenvalue.

The Method (CF)

The function f(x) is pseudoconvex on x if

det(D.) <0, p(IDZY|Dp) <1, and 0 < A,_1(Hc) — p(Ha).
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Method Based on Crouzeix

Ferland suggests to check that the nth largest eigenvalue of every
symmetric matrix D € D is positive.

Theorem

Checking that the nth largest eigenvalue of every symmetric matrix D € D
is positive is a co-NP-hard problem even on the class of problems with

g = 0, H. symmetric positive definite and entrywise nonnegative, and Hp
consisting of ones.

The Method (C)
The function f(x) is pseudoconvex on x if 0 & g and A,(D.) > p(Dp).
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Numerical Experiments

Example (Random choices of H and g)

n =dimension, d =radius of H and g,
H := H — ~/,, minimally to fail positive semidefiniteness.

success rate (in %) time (in 10 3sec.)
n MP1 MP2 F CF C | MP1 MP2 F CF C

d
5 1 0 21.2 357 407 435 | 1.12 932 214 0.835 0.644
10 1 0 32 94 11.0 2930889 498 371 0.831 0.669
1
1

15 0 03 10 13 20.3]0.958 427 534 0.860 0.694
20 0 0 0 0 11.8 | 1.32 3085 7.43 120 0.775
5 01 47 52 66.8 67.7 654 | 0978 6.45 224 0.814 0.629
10 01 37 503 61 62 56.1 | 3.88 193 438 0.936 0.662
15 0.1 26.7 457 546 555 418 | 109 5814 6.61 0.973 0.681
20 01 25 51 57 57 41 | 6689 280048 11.1 1.25 0.793

The winners: Crouzeix and Ferland (CF) and Crouzeix (C)
Open problems: choice of a in (MP1-2), improve (CF) and (C)
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