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Interval LP

Linear Programming

min cT x subject to Ax = b, x ≥ 0

Arising in many practical problems:

transportation, networks, production, scheduling & planning,
assignment, investment, regression, classification, approximation,
zero-sum game, . . .

Data often uncertain!

imprecise measurements, estimation, discretization, . . .

Interval Linear Programming Problem

A family of linear programs

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

where c ∈ c = [c , c], b ∈ b = [b, b], and A ∈ A = [A,A].

Assume f (A, b, c) ∈ R for all A ∈ A, b ∈ b and , c ∈ c.
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Interval LP: Optimal Value Range

Optimal Value Range

The range of optimal values f = [f , f ], where

f ≡ min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f ≡ max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

Theorem (Beeck (1978), Machost (1970), Rohn (1976, 1984))

We have

f = min cT x subject to Ax ≤ b, −Ax ≤ −b, x ≥ 0,

f = sups∈{±1}m f (Ac − diag(s)A∆, bc + diag(s)b∆, c),

where Ac := 1
2(A+A), A∆ := 1

2 (A−A) and m is the number of equations.

Theorem (Rohn (1997), Gabrel et al. (2008))

checking f = ∞ is NP-hard

checking f ≥ 1 is strongly NP-hard (with A, c crisp and f < ∞)
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Interval LP: Basis Stability

Definition

The interval linear programming problem

min c
T x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cT
B
x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Theorem

checking B-stability for a given basis B is co-NP-hard (Hlad́ık, 2014),
but there are sufficient conditions

it is polynomial for crisp A
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Fuzzy LP

Fuzzy Linear Program

f̃ := min c̃T x subject to Ãx = b̃, x ≥ 0

α-cut is an interval linear program

f α := min c
T

α
x subject to Aαx = bα, x ≥ 0

Fuzzy Optimal Value

Fuzzy optimal value f̃ is defined via α-cut f α = [f α, f α] , where

f α := min f (A, b, c) subject to A ∈ Aα, b ∈ bα, c ∈ cα,

f α := max f (A, b, c) subject to A ∈ Aα, b ∈ bα, c ∈ cα.

Shape of the Fuzzy Optimal Value

By the shape of f̃ we mean the shape of the function α 7→ f α = [f α, f α].

In particular, α 7→ f α is the left part and α 7→ f α the right part.
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Fuzzy LP: Shape of the Optimal Value

Example

0
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α-cut

left part α 7→ f α right part α 7→ f α
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Fuzzy LP: Optimal Value

Proposition

The optimal value f̃ is a well-defined fuzzy number.

Proposition

If the shape of the input coefficients in Ã, b̃, c̃ is polynomial, then the
shape of f̃ is determined by a piecewisely rational polynomial function.

Proof.

On a basis stable neighbourhood we have f (A, b, c) = cT
B
A−1
B

b.

Proposition

If the optimal value f (A, b, c) is continuous on (α = 0)-cut, then the
piecewise polynomial segments are continuously connected.
Otherwise, there may be jumps.
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Fuzzy LP: Shape of the Optimal Value

Example

Consider the fuzzy LP problem with one triangular fuzzy coefficient

min x subject to x ≥ −1, x ≤ 0, [−1, 0, 1]x ≥ 0.

the (α = 1)-cut of the optimal value is f α=1 = −1,

for every α ∈ [0, 1) the α-cut reads f α = [−1, 0].

So, f̃ is still an ordinary fuzzy number, but with an unusual shape.

0

1

−1 0
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Fuzzy LP: Shape of the Optimal Value

Example

minx∈R6 cT x s.t. Ãx = b, x ≥ 0, where Ã has fuzzy triangular entries

Ã =




[1−∆, 1, 1 + ∆] [2−∆, 2, 2 +∆] 1 0 0 0
[1−∆, 1, 1 + ∆] [1−∆, 1, 1 +∆] 0 1 0 0
[2−∆, 2, 2 + ∆] [1−∆, 1, 1 +∆] 0 0 1 0
[3−∆, 3, 3 + ∆] [1−∆, 1, 1 +∆] 0 0 0 1


 ,

and ∆ is a parameter. The crisp-valued coefficients are

c = (−0.8,−1.5, 0, 0, 0, 0)T , b = (12, 7, 10, 12)T .
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Fuzzy LP: Polynomial Shape of the Optimal Value

Proposition

Suppose that the interval LP problem is basis stable for α = 0. Suppose
that Ã, b̃ are crisp and the shape of c̃ is described by a polynomial of
degree d.
Then the shape of f̃ is determined by a polynomial of degree d.

Remark

The result holds analogously for the case with Ã, c̃ crisp and b̃ fuzzy.

Corollary

Under assumptions of Proposition above, if c̃ has a triangular shape, then
f̃ has a triangular shape. Moreover, if c̃ has a symmetric triangular shape,
then f̃ has a symmetric triangular shape.

Proposition

If Ã, b̃ are crisp and c̃ is fuzzy triangular, then f̃ is concave piecewise linear.
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Fuzzy LP: Linear Shape of the Optimal Value

Example

A, b are crisp and c̃ fuzzy triangular depending on parameter ∆

A =




1 2 1 0 0 0
1 1 0 1 0 0
2 1 0 0 1 0
3 1 0 0 0 1


 ,

b = (12, 7, 10, 12)T ,

c̃ = ([−∆,−0.2,−0.1],
[−1.55,−1.5,−0.1], 0, 0, 0, 0)T.

Membership function of f̃∆ is piecewise linear and concave in α.
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Conclusion

Summary

linear programming problems have often uncertain data in practice,

shape of the optimal value in fuzzy linear programming (polynomial,
linear, concave, . . . )

info for a decision maker what is the effect on optimal value.
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