AE regularity of interval matrices

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

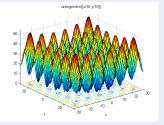
> MatTriad 2017 Będlewo, Poland September 25–29, 2017

Interval Matrices - Motivation

Where interval data do appear

- numerical analysis (handling rounding errors)

 - $\pi \in [3.1415926535897932384, 3.1415926535897932385].$
- constraint solving and global optimization
 - find robot singularities, where it may breakdown check joint angles [0, 180]°
 - find minimum of $f(x) = 20 + x_1^2 + x_2^2 10(\cos(2\pi x_1) + \cos(2\pi x_2))$



- modelling uncertainty
 - temperature measured in Będlewo, $20^{\circ}\text{C} \pm 1^{\circ}\text{C}$

Interval Matrix and Regularity

Definition

Interval Matrix An interval matrix is the family of matrices

$$\mathbf{A} = \{ A \in \mathbb{R}^{m \times n} : \underline{A} \le A \le \overline{A} \},$$

The midpoint and the radius matrices are defined as

$$A_c := \frac{1}{2}(\underline{A} + \overline{A}), \quad A_{\Delta} := \frac{1}{2}(\overline{A} - \underline{A}).$$

The set of all interval $m \times n$ matrices is denoted by $\mathbb{IR}^{m \times n}$.

Regularity

 $\mathbf{A} \in \mathbb{IR}^{n \times n}$ is regular if each $A \in \mathbf{A}$ is nonsingular.

Interval Matrix and Regularity

Properties

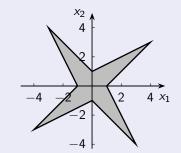
• If $\mathbf{A} \in \mathbb{IR}^{n \times n}$ is regular, then each realization of $\mathbf{A}x = \mathbf{b}$ has a unique solution and the solution set

$$\{x \in \mathbb{R}^n : \exists A \in \mathbf{A} \,\exists b \in \mathbf{b} : Ax = b\}$$

is a nonempty and bounded (nonconvex) polyhedron.

Example.

$$\begin{pmatrix} \begin{bmatrix} 2,4 \end{bmatrix} & \begin{bmatrix} -2,1 \end{bmatrix} \\ \begin{bmatrix} -1,2 \end{bmatrix} & \begin{bmatrix} 2,4 \end{bmatrix} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} -2,2 \end{bmatrix} \\ \begin{bmatrix} -2,2 \end{bmatrix} \end{pmatrix}$$



- Eigenvalues of interval matrices.
- Checking regularity is a co-NP-hard problem (Poljak & Rohn, 1988).

AE Regularity

AE quantification

Disjointly split $\mathbf{A} \in \mathbb{IR}^{n \times n}$ as

$$\mathbf{A} = \mathbf{A}^{\forall} + \mathbf{A}^{\exists},$$

where

- ullet is the interval matrix comprising universally quantified coefficients,
- A^{\exists} concerns existentially quantified coefficients.

Example

$$\mathbf{A} = \begin{pmatrix} [-1,1]^{\forall} & [1,2]^{\exists} \\ 23 & [5,6]^{\exists} \end{pmatrix}$$

Definition

An interval matrix $\mathbf{A} = \mathbf{A}^{\forall} + \mathbf{A}^{\exists}$ is called AE regular if

 $\forall A^\forall \in \mathbf{A}^\forall \, \exists A^\exists \in \mathbf{A}^\exists \text{ such that } A = A^\forall + A^\exists \text{ is nonsingular}.$

Motivation I.

Quantified Interval Linear Programming

min
$$\boldsymbol{c}^T x$$
 subject to $\boldsymbol{A} x = \boldsymbol{b}, \ x \ge 0$

Traditional Problems

- range of optimal values
- basis stability
- optimal solution set
- robust optimization

AE quantification

- ullet intensively studied with $\forall \exists$ quantification now,
- robust optimization,
- need for $\forall \exists$ quantification $(\sum_i w_i x_i = 1)$.

Motivation II.

Definition (AE Solvability of Interval Linear Systems)

$$\mathbf{A}^{\forall \exists} x = \mathbf{b}^{\forall \exists}$$
 is AE solvable if
$$\forall A^{\forall} \in \mathbf{A}^{\forall}, \forall b^{\forall} \in \mathbf{b}^{\forall}, \exists A^{\exists} \in \mathbf{A}^{\exists}, \exists b^{\exists} \in \mathbf{b}^{\exists}:$$

$$(A^{\forall} + A^{\exists}) x = b^{\forall} + b^{\exists} \text{ is solvable.}$$

Theorem

If $\mathbf{A}^{\forall \exists}$ is AE regular, then $\mathbf{A}^{\forall \exists} x = \mathbf{b}^{\forall \exists}$ is AE solvable for each $\mathbf{b}^{\forall \exists}$. The converse is not true in general.

Example

The counter-example for the converse direction is

$$oldsymbol{A}^{orall}=0, \quad oldsymbol{A}^{\exists}=egin{pmatrix} 0 & [-1,1] \ 0 & [-1,1] \end{pmatrix}.$$

Then $\mathbf{A}^{\forall \exists}$ is not AE regular, but $\mathbf{A}^{\forall \exists} x = \mathbf{b}^{\forall \exists}$ is AE solvable.

AE Regularity

AE Regularity

- ullet is hard to check (generalizes regularity of $oldsymbol{A}^{orall}$)
- even regularity of A^{\exists} is open problem

Example

Is not AE regular:

$$\mathbf{A}^{\exists} = \begin{pmatrix} [1,2] & [1,2] & [1,2] & [1,2] & [1,2] \\ [1,2] & 0 & 0 & 0 & [1,2] \\ [1,2] & 0 & 0 & 0 & [1,2] \\ [1,2] & 0 & 0 & 0 & [1,2] \\ [1,2] & [1,2] & [1,2] & [1,2] & [1,2] \end{pmatrix}.$$

Conjecture

 \mathbf{A}^{\exists} is regular iff it has no submatrix of size $k \times \ell$ that is real and has the rank $k + \ell - n - 1$.

AE Regularity

Theorem

 \mathbf{A}^\exists is regular iff some vertex matrix $(a_{ij} \in \{\underline{a}_{ij}, \overline{a}_{ij}\})$ is nonsingular.

Open Problems

- Is there a simpler characterization?
- What is the computational complexity?

Interval M-matrix

 $A \in \mathbb{R}^{n \times n}$ is an M-matrix if $a_{ij} \leq 0$ for $i \neq j$ and $A^{-1} \geq 0$.

Theorem (∀ case, Barth & Nuding, 1974)

 $\mathbf{A}^{\forall} \in \mathbb{IR}^{n \times n}$ is an M-matrix iff \underline{A} is an M-matrix and $\overline{A}_{ij} \leq 0$ for $i \neq j$.

Theorem (∃ case)

Let $\mathbf{A}^{\exists} \in \mathbb{IR}^{n \times n}$ and define $\tilde{A} \in \mathbf{A}^{\exists}$ as follows

$$\tilde{a}_{ij} = \begin{cases} \overline{a}_{ij} & \text{if } i = j, \\ \arg\min\{|a_{ij}| : a_{ij} \in \mathbf{a}_{ij}^{\exists}\} & \text{if } i \neq j. \end{cases}$$
 (*)

Then \mathbf{A}^{\exists} is an M-matrix iff \tilde{A} is an M-matrix.

Theorem ($\forall \exists$ case)

Denote by $\tilde{A} = \underline{A}^{\forall} + \tilde{A}^{\exists}$ the matrix from (*) corresponding to $\underline{A}^{\forall} + \mathbf{A}^{\exists}$. Then $\mathbf{A}^{\forall \exists}$ is AE M-matrix iff \tilde{A} is M-matrix and $(\overline{A}^{\forall} + \tilde{A}^{\exists})_{ij} \leq 0$ for $i \neq j$.

Interval H-matrix

 $A \in \mathbb{R}^{n \times n}$ is called an H-matrix, if the comparison matrix $\langle A \rangle$ is an M-matrix, where $\langle A \rangle_{ii} = |a_{ii}|$ and $\langle A \rangle_{ij} = -|a_{ij}|$ for $i \neq j$.

Magnitude and Mignitude

$$\begin{split} \mathsf{mag}(\boldsymbol{a}) &= \mathsf{max}\{|\boldsymbol{a}| \colon \boldsymbol{a} \in \boldsymbol{a}\} = |\boldsymbol{a}_c| + \boldsymbol{a}_\Delta, \\ \mathsf{mig}(\boldsymbol{a}) &= \mathsf{min}\{|\boldsymbol{a}| \colon \boldsymbol{a} \in \boldsymbol{a}\} = \begin{cases} 0 & \text{if } 0 \in \boldsymbol{a}, \\ \mathsf{min}(|\underline{\boldsymbol{a}}|, |\overline{\boldsymbol{a}}|) & \text{otherwise.} \end{cases} \end{split}$$

Theorem (∀ case, Neumaier 1984)

Let $\mathbf{A}^{\forall} \in \mathbb{IR}^{n \times n}$ and define $\tilde{A} \in \mathbf{A}^{\forall}$ as follows

$$ilde{\pmb{a}}_{ij} = egin{cases} \mathsf{mig}(\pmb{a}_{ij}^{orall}) & \textit{if } i = j, \ -\mathsf{mag}(\pmb{a}_{ij}^{orall}) & \textit{if } i
eq j. \end{cases}$$

Then \mathbf{A}^{\forall} is an H-matrix iff \tilde{A} is an M-matrix.

Interval H-matrix

Theorem $(\exists case)$

Let $\mathbf{A}^{\exists} \in \mathbb{IR}^{n \times n}$ and define $\tilde{A} \in \mathbf{A}^{\exists}$ as follows

$$\widetilde{a}_{ij} = egin{cases} \mathsf{mag}(oldsymbol{a}_{ij}^{\exists}) & \textit{if } i = j, \ -\mathsf{mig}(oldsymbol{a}_{ij}^{\exists}) & \textit{if } i \neq j. \end{cases}$$

Then \mathbf{A}^{\exists} is an H-matrix iff \tilde{A} is an M-matrix.

Theorem (∀∃ case)

Define the matrix \tilde{A} as follows

$$\widetilde{a}_{ij}^{\exists} = egin{cases} \operatorname{mig}(\boldsymbol{a}_{ij}^{\forall}) + \operatorname{mag}(\boldsymbol{a}_{ij}^{\exists}) & \text{if } i = j, \\ -\operatorname{mag}(\boldsymbol{a}_{ij}^{\forall}) - \operatorname{mig}(\boldsymbol{a}_{ij}^{\exists}) & \text{if } i \neq j. \end{cases}$$

Then $\mathbf{A}^{\forall \exists}$ is an AE H-matrix if and only if \tilde{A} is an M-matrix.

Interval H-matrix

Theorem (Neumaier, 1990)

If A_c^{\forall} is an M-matrix, then \mathbf{A}^{\forall} is regular iff \mathbf{A}^{\forall} is H-matrix.

Example

For AE quantification, this statement is no longer valid.

$$oldsymbol{A}^{orall \exists} = egin{pmatrix} [0.8,1]^\exists & -[0,1]^orall \ -1 & 1 \end{pmatrix}.$$

Then $A_c^{\forall \exists}$ is an M-matrix and $\mathbf{A}^{\forall \exists}$ is AE regular, but not an AE H-matrix.

Structured Quantifiers Position

Theorem

The square interval matrix

$$m{A}^{orall \exists} = egin{pmatrix} m{B}^orall & m{b}^\exists \ m{C}^orall & m{c}^orall \end{pmatrix}, \quad ext{where} \quad m{b}^\exists \Delta > 0,$$

is AE regular iff $(\mathbf{B}^T \ \mathbf{C}^T)^{\forall}$ and $(\mathbf{C} \ \mathbf{c})^{\forall}$ have full row rank.

Theorem

Let $\mathbf{B} \in \mathbb{IR}^{n \times k}$ and $\mathbf{C} \in \mathbb{IR}^{n \times (n-k)}$ with $C_{\Delta} > 0$. Then $(\mathbf{B}^{\forall} \mathbf{C}^{\exists})$ is AE regular iff \mathbf{B}^{\forall} has full column rank.

Conjecture

The square interval matrix

$$\begin{pmatrix} \boldsymbol{B}^{\forall} & \boldsymbol{D}^{\exists} \\ \boldsymbol{C}^{\forall} & \boldsymbol{E}^{\forall} \end{pmatrix}, \quad \text{where} \quad \boldsymbol{D}^{\exists}_{\Delta} > 0,$$

is AE regular iff $(\mathbf{B}^T \ \mathbf{C}^T)^{\forall}$ and $(\mathbf{C} \ \mathbf{E})^{\forall}$ have full row rank.

Conclusion

Summary

- We introduced a generalized regularity concept of interval matrices.
- Easy to handle cases:
 - M-matrices
 - H-matrices
 - special position of quantifiers

Many Open Problems

- AE regularity of $\mathbf{A}^{\forall \exists}$: characterization, ...
- regularity of A^{\exists} : complexity, characterization, ...
- structured quantifiers position conjecture
- identifying other polynomial cases