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Mean value form

Theorem

Let f : Rn 7→ R, x ∈ IR
n and a ∈ x . Then

f (x) ⊆ f (a) +∇f (x)T (x − a),

Proof.

By the mean value theorem, for any x ∈ x there is c ∈ x such that

f (x) = f (a) +∇f (c)T (x − a) ∈ f (a) +∇f (x)T (x − a).

Improvements

successive mean value form

f (x) ⊆ f (a) + f ′x1(x1, a2, . . . , an)(x1 − a1)

+ f ′x2(x1, x2, a3 . . . , an)(x2 − a2) + . . .

+ f ′xn(x1, . . . , xn−1, xn)(xn − an).

replace derivatives by slopes
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Slopes

Slope form enclosure

f (x) ⊆ f (a) + S(x , a)(x − a),

where a ∈ x and

S(x , a) :=

{

f (x)−f (a)
x−a

if x 6= a,

f ′(x) otherwise.

Remarks

Slopes can be replaced by derivatives, but slopes are tighter.

Slopes can be computed in a similar way as derivatives.

function its slope S(x , a)

x 1
f (x)± g(x) Sf (x , a)± Sg (x , a)

f (x) · g(x) Sf (x , a)g(a) + f (x)Sg (x , a)

e f (x) e f (x)Sf (x , a)
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Slopes

Example

f (x) = 1
4x

2 − x + 1
2 , x = [1, 7].

f ′(x) = [−1
2 ,

5
2 ], Sf (x , x

c) = [14 ,
7
4 ].

1

2

3

4

5

1 2 3 4 5 6 7 8−1 0 x

y

f (x)

f ′(x)

Sf (x , x
c)

Notice: Slopes cannot be used for monotonicity checking.
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Nonlinear Equations

Problem statement

Find all solutions to

fj(x1, . . . , xn) = 0, j = 1, . . . , j∗

inside the box x0 ∈ IR
n.

Theorem (Zhu, 2005)

For a polynomial p(x1, . . . , xn), there is no algorithm solving

p(x1, . . . , xn)
2 +

n
∑

i=1

sin2(πxi ) = 0.

Proof.

From Matiyasevich’s theorem solving the 10th Hilbert problem.

Remark

Using the arithmetical operations only, the problem is decidable by Tarski’s
theorem (1951).

8 / 60



Interval Newton method

Classical Newton method

. . . is an iterative method

xk+1 := xk −∇f (xk)−1f (xk), k = 0, . . .

Cons

Can miss some solutions

Not verified (Are we really close to the true solution?)

Interval Newton method – Stupid intervalization

xk+1 := xk −∇f (xk)−1f (xk), k = 0, . . .

Interval Newton method – Good intervalization

N(xk , xk) := xk −∇f (xk)−1f (xk),

xk+1 := xk ∩ N(xk , xk), k = 0, . . .
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Interval Newton method

Theorem (Moore, 1966)

If x , x0 ∈ x and f (x) = 0, then x ∈ N(x0, x).

Proof.

By the Mean value theorem,

fi(x)− fi (x
0) = ∇fi(ci )

T (x − x0), ∀i = 1, . . . , n.

If x is a root, we have

−fi(x
0) = ∇fi(ci )

T (x − x0).

Define A ∈ R
n×n such that its ith row is equal to ∇fi(ci )

T . Hence

−f (x0) = A(x − x0),

from which

x = x0 − A−1f (x0) ∈ x0 −∇f (x)−1f (x0).

Notice, that this does not mean that there is c ∈ x such that

−f (x0) = ∇f (c)(x − x0).
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Interval Newton method

Theorem (Nickel, 1971)

If ∅ 6= N(x0, x) ⊆ x , then there is a unique root in x and ∇f (x) is regular.

Proof.

“Regularity.” Easy.

“Existence.” By Brouwer’s fixed-point theorem.
[Any continuous mapping of a compact convex set into itself has a fixed point.]

“Uniqueness.” If there are two roots y1 6= y2 in x , then by the Mean value
theorem,

f (y1)− f (y2) = A(y1 − y2)

for some A ∈ ∇f (x);. Since f (y1) = f (y2) = 0, we get

A(y1 − y2) = 0

and by the nonsingularity of A, the roots are identical.
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Interval Newton method

Practical implementation

Instead of

N(xk , xk) := xk −∇f (xk)−1f (xk)

let N(xk , xk) be an enclosure of the solution set (with respect to x) of

∇f (x)(x − x0) = −f (x0).

Extended interval arithmetic

So far
[12, 15]

[−2, 3]
= (−∞,∞).

Now,

a/b := {a/b : a ∈ a, 0 6= b ∈ b}.

So,
[12, 15]

[−2, 3]
= (−∞,−6] ∪ [4,∞).
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Interval Newton method

Example

x

y

f (x) = x3 − x + 0.2

0.5

1.0

−0.5

−1.0

0.5 1.0 1.5−0.5−1.0−1.5−2.0

In six iterations precision 10−11 (quadratic convergence).
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Interval Newton method

Example (Moore, 1993)

y
f (x) = x2 + sin(x−3)

0

0.5

1.0

−0.5

−1.0

0.5 1.0

All 318 roots of in the interval [0.1, 1] found with accuracy 10−10.
The left most root is contained in [0.10003280626, 0.10003280628].

Summary

N(x0, x) contains all solutions in x

If x ∩ N(x0, x) = ∅, then there is no root in x

If ∅ 6= N(x0, x) ⊆ x , then there is a unique root in x
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Krawczyk method

Krawczyk operator

Let x0 ∈ x and C ∈ R
n×n, usually C ≈ ∇f (x0)−1. Then

K (x) := x0 − Cf (x0) + (In − C∇f (x))(x − x0).

Theorem

Any root of f (x) in x is included in K (x).

Proof.

If x1 is a root of f (x), then it is a fixed point of

g(x) := x − Cf (x).

By the mean value theorem,

g(x1) ∈ g(x0) +∇g(x)(x1 − x0),

whence

x1 ∈ g(x) ⊆ g(x0) +∇g(x)(x − x0)

= x0 − Cf (x0) + (In − C∇f (x))(x − x0).
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Krawczyk method

Theorem

If K (x) ⊆ x , then there is a root in x .

Proof.

Recall

g(x) := x − Cf (x).

By the proof of the previous Theorem, K (x) ⊆ x implies

g(x) ⊆ x .

Thus, there is a fixed point x0 ∈ x of g(x),

g(x0) = x0 − Cf (x0) = x0,

so x0 is a root of f (x).
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Krawczyk method

Theorem (Kahan, 1968)

If K (x) ⊆ int x , then there is a unique root in x and ∇f (x) is regular.

Recall Theorem from “ε-inflation” (for solving Ax = b)

Let x ∈ IR
n and C ∈ R

n×n. If

K (x) = Cb + (In − CA)x ⊆ int x ,

then C is nonsingular, A is regular, and Σ ⊆ x .

Proof.

The inclusion K (x) ⊆ int x reads

−Cf (x0) + (In − C∇f (x))(x − x0) ⊆ int (x − x0)

Apply the above Theorem for

b := −f (x0), A := ∇f (x), x := x − x0

We have that ∇f (x) is regular, which implies uniqueness.
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More general constraints

Constraints

equations hi(x) = 0, i = 1, . . . , I

inequalities gj(x) ≤ 0, j = 1, . . . , J

may be others, but not considered here
(6=, quantifications, logical operators, lexicographic orderings, . . . )

Problem

Denote by Σ the set of solutions in an initial box x0 ∈ IR
n?

Problem: How to describe Σ?

Subpavings

Split x into a union of three sets of boxes such that

the first set has boxes provably containing no solution

the second set has boxes that provably consist of only solutions

the third set has boxes which may or may not contain a solution
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Subpaving Example

Example

x2 + y2 ≤ 16,

x2 + y2 ≥ 9

Figure: Exact solution set

−4

−3

−2

−1

0

1

2

3

4

 

 

Figure: Subpaving approximation
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Subpaving Example

Example

(x − 1)2 + (y − 2)2 ≤ 1
7 ,

(x2 + y2 − 9)(13x − y2) ≥ 1
2

Figure: Exact solution set Figure: Subpaving approximation
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Subpaving Algorithm

Branch & Bound approach

divide x0 recursively into sub-boxes,

remove sub-boxes with provably no solutions

contract sub-boxes

Some simple tests

Test for x ⊆ Σ:

no equations and g j(x) ≤ 0 ∀j

Test for x ∩Σ = ∅:
0 6∈ hi(x) for some i

g
j
(x) > 0 for some j

Also very important

Which box to choose (data structure fo L)?

How to divide the box? (which coordinate, which place, how many
sub-boxex)
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A Simple Contractor – Constraint Propagation

Example

Consider the constraint

x + yz = 7, x ∈ [0, 3], y ∈ [3, 5], z ∈ [2, 4].

Express x

x = 7− yz ∈ 7− [3, 5][2, 4] = [−13, 1].

Thus, the domain for x is [0, 3] ∩ [−13, 1] = [0, 1].

Express y

y = (7− x)/z ∈ (7− [0, 1])/[2, 4] = [1.5, 3.5].

Thus, the domain for y is [3, 5] ∩ [1.5, 3.5] = [3, 3.5].

Express z

z = (7− x)/y ∈ (7− [0, 1])/[3, 3.5] = [127 ,
7
3 ].

Thus, the domain for z is [2, 4] ∩ [127 ,
7
3 ] = [2, 73 ].

No further propagation needed as each variable appears just once.
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Other Techniques

Other techniques

Various kinds of consistencies (2B, 3B,. . . ), shaving,. . .

Example (thanks to Elif Garajová)

−4

−3

−2

−1

ε = 1.0
time: 0.952 s

ε = 0.5
time: 2.224 s

ε = 0.125
time: 9.966 s
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Software

Free constraint solving software

Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html

Quimper (by Gill Chabert and Luc Jaulin),
written in an interval C++ library IBEX,
a language for interval modelling and handling constraints,
http://www.emn.fr/z-info/ibex

RealPaver (by L. Granvilliers and F. Benhamou),
a C++ package for modeling and solving nonlinear and nonconvex
constraint satisfaction problems,
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver

RSolver (by Stefan Ratschan),
solver for quantified constraints over the real numbers,
implemented in the programming language OCaml,
http://rsolver.sourceforge.net/
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Introduction

Rigorous computation

What and why?

Can we obtain rigorous numerical results by using floating-point
arithmetic?

Yes, by extending to interval arithmetic. Direct usage is however not
effective!

Example (Amplification factor for the interval Gaussian elimination)

n = 20 n = 50 n = 100 n = 170

102 105 1010 1016

Advise

Postpone interval computation to the very end.
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Verification

Verification

Compute a solution by floating-point arithmetic, and then to verify that
the result is correct or determine rigorous distance to a true solution.

Typically, we can prove uniqueness (=the problem is well posed).
Therefore, verifying singularity of a matrix cannot be performed!

What we will do

As an example, we show a verification method for the problem of finding a
root of a function f : Rn → R

n.

Problem statement

Given x∗ ∈ R
n a numerically computed (=approximate) solution of

f (x) = 0, find a small interval 0 ∈ y ∈ IR
n such that the true solution lies

in x∗ + y .
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Illustration of Verification

Example

Illustration of the verification of x∗ to be a solution of f (x) = 0.

1

2

3

1 2 3 4 5 x1

x2

f1(x) = 0 f2(x) = 0

x∗x∗
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Ingredients

Brouwer fixed-point theorem

Let U be a convex compact set in R
n and g : U → U a continuous

function. Then there is a fixed point, i.e., ∃x ∈ U : g(x) = x .

Observation

Finding a root of f (x) is equivalent to finding a fixed-point of the function
g(y) ≡ y − C · f (x∗ + y), where C is any nonsingular matrix of order n.

Perron theory of nonnegative matrices

If |A| ≤ B , then ρ(A) ≤ ρ(B).
(≤ is meant entrywise and ρ(·) is the spectral radius)

If A ≥ 0, x > 0 and Ax < αx , then ρ(A) < α.

Lemma

If z + Ry ⊆ int y , then ρ(R) < 1 for every R ∈ R .

Proof. |R |y∆ < y∆, whence by Perron theory ρ(R) < 1.
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Cooking

Theorem

Suppose 0 ∈ y . Now if

−C · f (x∗) + (I − C · ∇f (x∗ + y)) · y ⊆ int y ,

then:

C and every matrix in ∇f (x∗ + y) are nonsingular, and

there is a unique root of f (x) in x∗ + y .

Proof.

By the mean value theorem,

f (x∗ + y) ∈ f (x∗) +∇f (x∗ + y)y .

By the assumptions, the function

g(y) = y − C · f (x∗ + y) ∈ −C · f (x∗) + (I − C · ∇f (x∗ + y))y ⊆ int y

has a fixed point, which shows “existence”.

By Lemma, C and ∇f (x∗ + y) are nonsingular, implying “uniqueness”.
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Cooking

Implementation

take C ≈ ∇f (x∗)−1 (numerically computed inverse),

take y := C · f (x∗) and repeat inflation

y :=

(

−C · f (x∗)+(I −C ·∇f (x∗+y)) ·y

)

· [0.9, 1.1]+10−20 [−1, 1]

until the assumption of Theorem are satisfied.
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Verification of a Linear System of Equations

Problem formulation

Given a real system Ax = b and x∗ approximate solution, find y ∈ IR
n

such that A−1b ∈ x∗ + y .

Example

x1

x2

x∗
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Verification of a Linear System of Equations

Given the system Ax = b and an approximate solution x∗.

Theorem

Suppose 0 ∈ y . Now if

C (b − Ax∗) + (I − CA)y ⊆ int y ,

then:

C and A are nonsingular,

there is a unique solution of Ax = b in x∗ + y .

Proof.

Use the previous result with f (x) = Ax − b.

Implementation

take C ≈ A−1 (numerically computed inverse),
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Verification of a Linear System of Equations

ε-inflation method (Caprani and Madsen, 1978, Rump, 1980)

Repeat inflating y := [0.9, 1.1]x + 10−20[−1, 1] and updating

x := C (b − Ax∗) + (I − CA)y

until x ⊆ int y .

Then, Σ ⊆ x∗ + x .

Results

Verification is about 7 times slower than solving the original problem
(for random instances of dimension 100 to 2000).
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Verification of a Linear System of Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., aij =
1

i+j−1), and b := Ae.

Then Ax = b has the solution x = e = (1, . . . , 1)T .

Approximate solution by
Matlab:

0.999999999235452
1.000000065575364
0.999998607887449
1.000012638750021
0.999939734980300
1.000165704992114
0.999727989024899
1.000263042205847
0.999861803020249
1.000030414871015

Enclosing interval by ε-inflation method (2 it-
erations):

[ 0.99999973843401, 1.00000026238575]
[ 0.99999843048508, 1.00000149895660]
[ 0.99997745481481, 1.00002404324710]
[ 0.99978166603900, 1.00020478046370]
[ 0.99902374408278, 1.00104070076742]
[ 0.99714060702796, 1.00268292103727]
[ 0.99559932282378, 1.00468935360003]
[ 0.99546972629357, 1.00425202249136]
[ 0.99776781605377, 1.00237789028988]
[ 0.99947719419921, 1.00049082925529]
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Verification of a Linear System of Equations

Challenge

verification for large systems
(one cannot use preconditioning by the inverse matrix)
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Tolerable Solutions

Motivation

So far, existentially quantified interval systems

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Now, incorporate universal quantification as well!

Definition (Tolerable solutions)

A vector x ∈ R
n is a tolerable solution to Ax = b if for each A ∈ A there

is b ∈ b such that Ax = b.

In other words,

∀A ∈ A ∃b ∈ b : Ax = b.

Equivalent characterizations

Ax ⊆ b,

|Acx − bc | ≤ −A∆|x |+ b∆.
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Tolerable Solutions

Theorem (Rohn, 1986)

A vector x ∈ R
n is a tolerable solution if and only if x = x1 − x2, where

Ax1 − Ax2 ≤ b, Ax1 − Ax2 ≥ b, x1, x2 ≥ 0.

Proof.

“⇐” Let A ∈ A. Then

Ax = Ax1 − Ax2 ≤ Ax1 − Ax2 ≤ b,

Ax = Ax1 − Ax2 ≥ Ax1 − Ax2 ≥ b

Thus, Ax ∈ b and Ax = b for some b ∈ b.

“⇒” Let x ∈ R
n be a tolerable solution. Define x1 := max{x , 0} and

x2 := max{−x , 0} the positive and negative part of x , respectively. Then
x = x1 − x2, |x | = x1 + x2, and |Acx − bc | ≤ −A∆|x |+ b∆ draws

Ac(x1 − x2)− bc ≤ −A∆(x1 + x2) + b∆,

−Ac(x1 − x2) + bc ≤ −A∆(x1 + x2) + b∆.
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Tolerable Solutions – Application

Example (Leontief’s Input–Output Model of Economics)

economy with n sectors (e.g., agriculture, industry, transportation,
etc.),

sector i produces a single commodity of amount xi ,

production of each unit of the jth commodity will require aij
(amount) of the ith commodity

di the final demand in sector i .

Now the model draws

xi = ai1x1 + · · ·+ ainxn + di .

or, in a matrix form

x = Ax + d .

The solution x = (In − A)−1d =
∑∞

k=0 A
kd is nonnegative if ρ(A) < 1.

Question: Exists x such that for any A ∈ A there is d ∈ d : (In − A)x = d?
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AE Solutions

Quantified system Ax = b

each interval parameter aij and bi is quantified by ∀ or ∃

the universally quantified parameters are denoted by A∀, b∀,

the existentially quantified parameters are denoted by A∃, b∃

the system reads (A∀ + A∃)x = b∀ + b∃

Definition (AE solution set)

ΣAE :=
{

x ∈ R
n :

∀A∀ ∈ A∀ ∀b∀ ∈ b∀ ∃A∃ ∈ A∃ ∃b∃ ∈ b∃ : (A∀ + A∃)x = b∀ + b∃
}

.
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AE Solutions

Theorem (Shary, 1995)

ΣAE =
{

x ∈ R
n : A∀x − b∀ ⊆ b∃ − A∃x

}

. (1)

Proof.

ΣAE =
{

x ∈ R
n
: ∀A

∀
∈ A

∀
∀b

∀
∈ b

∀
∃A

∃
∈ A

∃
∃b

∃
∈ b

∃
: A

∀
x − b

∀
= b

∃
− A

∃
x
}

=
{

x ∈ R
n
: ∀A

∀
∈ A

∀
∀b

∀
∈ b

∀
: A

∀
x − b

∀
∈ b

∃
− A

∃
x
}

=
{

x ∈ R
n
: A

∀
x − b

∀
⊆ b

∃
− A

∃
x
}

.

Theorem (Rohn, 1996)

ΣAE =
{

x ∈ R
n : |Acx − bc | ≤

(

(A∃)∆ − (A∀)∆
)

|x |+ (b∃)∆ − (b∀)∆
}

.

Proof.

Using (1) and the fact p ⊆ q ⇔ |pc − qc | ≤ q∆ − p∆, we get

|
(

A∀x − b
∀
)

c −
(

b
∃ − A∃x

)

c | ≤
(

A∃x − b
∃
)∆

−
(

b
∀ − A∀x

)∆

= (A∃)∆|x |+ b
∃∆ − (A∀)∆x | − b

∀∆.
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AE Solutions

Example
(

[3, 4]∃ [−2, 1]∃

[0, 2]∀ [3, 4]∀

)

x =

(

[−4, 5]∃

[−4, 5]∃

)

.

1

2

3

−1

−2

−3

1 2 3−1−2−3 x1

x2

AE solution set.

(

[3, 4]∀ [−2, 1]∀

[0, 2]∀ [3, 4]∀

)

x =

(

[−4, 5]∃

[−4, 5]∃

)

.

1

2

3

−1

−2

−3

1 2 3−1−2−3 x1

x2

Tolerable solution set.
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Eigenvalues of Symmetric Interval Matrices

A symmetric interval matrix

AS := {A ∈ A : A = AT}.

Without loss of generality assume that A = AT , A = A
T
, and AS 6= ∅.

Eigenvalues of a symmetric interval matrix

Eigenvalues of a symmetric A ∈ R
n×n: λ1(A) ≥ · · · ≥ λn(A).

Eigenvalue sets of AS are compact intervals

λi (A
S) :=

{

λi (A) : A ∈ AS
}

, i = 1, . . . , n.

Theorem

Checking whether 0 ∈ λi (A
S) for some i = 1, . . . , n is NP-hard.

Proof.

A is singular iff MS :=

(

0 A

AT 0

)S

is singular (has a zero eigenvalue).
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Eigenvalues – An Example

Example

Let

A ∈ A =





[1, 2] 0 0
0 [7, 8] 0
0 0 [4, 10]





What are the eigenvalue sets?
We have λ1(A

S) = [7, 10], λ2(A
S) = [4, 8] and λ3(A

S) = [1, 2].

0 1 2 3 4 5 6 7 8 9 10 ℜ

λ1(A) λ2(A) λ3(A)

Eigenvalue sets are compact intervals. They may intersect or equal.
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Eigenvalues – Some Exact Bounds

Theorem (Hertz, 1992)

We have

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

λn(A
S) = min

z∈{±1}n
λn(A

c − diag(z)A∆ diag(z)).

Proof.

“Upper bound.” By contradiction suppose that there is A ∈ AS such that

λ1(A) > max
z∈{±1}n

λ1(Az),
[

where Az ≡ Ac + diag(z)A∆ diag(z)
]

Thus Ax = λ1(A)x for some x with ‖x‖2 = 1.
Put z∗ := sgn(x), and by the Rayleigh–Ritz Theorem we have

λ1(A) = xTAx ≤ xTAz∗x

≤ max
y :‖y‖2=1

yTAz∗y = λ1(Az∗).
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Eigenvalues – Some Other Exact Bounds

Theorem

λ1(A
S ) and λn(A

S) are polynomially computable by semidefinite

programming with arbitrary precision.

Proof.

We have

λn(A
S ) = maxα subject to A− αIn is positive semidefinite, A ∈ AS .

Consider a block diagonal matrix M(A, α) with blocks

A− αIn, aij − aij , aij − aij , i ≤ j .

Then the semidefinite programming problem reads

λn(A
S) = maxα subject to M(A, α) is positive semidefinite.
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Eigenvalues – Enclosures

Theorem

We have

λi(A
S) ⊆ [λi (A

c)− ρ(A∆), λi (A
c) + ρ(A∆)], i = 1, . . . , n.

Proof.

Recall for any A,B ∈ R
n×n,

|A| ≤ B ⇒ ρ(A) ≤ ρ(|A|) ≤ ρ(B),

and for A,B symmetric (Weyl’s Theorem)

λi (A) + λn(B) ≤ λi (A+ B) ≤ λi(A) + λ1(B), i = 1, . . . , n.

Let A ∈ AS , so |A − Ac | ≤ A∆. Then

λi (A) = λi (A
c + (A− Ac)) ≤ λi(A

c) + λ1(A− Ac)

≤ λi (A
c) + ρ(|A − Ac |) ≤ λi (A

c) + ρ(A∆).

Similarly for the lower bound.
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Eigenvalues – Easy Cases

Theorem
1 If Ac is essentially non-negative, i.e., Ac

ij ≥ 0 ∀i 6= j , then

λ1(A
S) = λ1(A).

2 If A∆ is diagonal, then

λ1(A
S) = λ1(A), λn(A

S) = λn(A).

Proof.

1 For the sake of simplicity suppose Ac ≥ 0. Then ∀A ∈ AS we have
|A| ≤ A, whence

λ1(A) = ρ(A) ≤ ρ(A) = λ1(A).

2 By Hertz’s theorem,

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

= λ1(A
c + A∆) = λ1(A).
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Positive Semidefiniteness

AS is positive semidefinite if every A ∈ AS is positive semidefinite.

Theorem

The following are equivalent

1 AS is positive semidefinite,

2 Az ≡ Ac − diag(z)A∆ diag(z) is positive semidefinite ∀z ∈ {±1}n,

3 xTAcx − |x |TA∆|x | ≥ 0 for each x ∈ R
n.

Proof.

“(1) ⇒ (2)” Obvious from Az ∈ AS .
“(2) ⇒ (3)” Let x ∈ R

n and put z := sgn(x). Now,

xTAcx − |x |TA∆|x | = xTAcx − xT diag(z)A∆ diag(z)x = xTAzx ≥ 0.

“(3) ⇒ (1)” Let A ∈ AS and x ∈ R
n. Now,

xTAx = xTAcx + xT (A − Ac)x ≥ xTAcx − |xT (A− Ac)x |

≥ xTAcx − |x |TA∆|x | ≥ 0.
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Positive Definiteness

AS is positive definite if every A ∈ AS is positive definite.

Theorem

The following are equivalent

1 AS is positive definite,

2 Az ≡ Ac − diag(z)A∆ diag(z) is positive definite for each z ∈ {±1}n,

3 xTAcx − |x |TA∆|x | > 0 for each 0 6= x ∈ R
n,

4 Ac is positive definite and A is regular.

Proof.

“(1) ⇔ (2) ⇔ (3)” analogously.
“(1) ⇒ (4)” If there are A ∈ A and x 6= 0 such that Ax = 0, then

0 = xTAx = xT 1
2(A + AT )x ,

and so 1
2 (A+ AT ) ∈ AS is not positive definite.

“(4) ⇒ (1)” Positive definiteness of Ac implies λi (A
c) > 0 ∀i , and

regularity of A implies λi (A
S) > 0 ∀i .
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Complexity

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of AS is co-NP-hard.

Theorem (Rohn, 1994)

Checking positive definiteness of AS is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive definite matrix in AS is a polynomial

time problem.

Proof.

There is a positive definite matrix in AS iff λn(A
S ) > 0.

So we can check it by semidefinite programming.
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Sufficient Conditions

Theorem

1 AS is positive semidefinite if λn(A
c) ≥ ρ(A∆).

2 AS is positive definite if λn(A
c) > ρ(A∆).

3 AS is positive definite if Ac is positive definite and

ρ(|(Ac)−1|A∆) < 1.

Proof.

1 AS is positive semidefinite iff λn(A
S) ≥ 0.

Now, employ the smallest eigenvalue set enclosure

λn(A
S) ⊆ [λn(A

c)− ρ(A∆), λn(A
c) + ρ(A∆)].

2 Analogous.

3 Use Beeck’s sufficient condition for regularity of A.
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Application: Convexity Testing

Theorem

A function f : Rn 7→ R is convex on x ∈ IR
n iff its Hessian ∇2f (x) is

positive semidefinite ∀x ∈ int x .

Corollary

A function f : Rn 7→ R is convex on x ∈ IR
n if ∇2f (x) is positive

semidefinite.
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Application: Convexity Testing

Example

Let

f (x , y , z) = x3 + 2x2y − xyz + 3yz2 + 8y2,

where x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z = [0, 1]. The Hessian of f
reads

∇2f (x , y , z) =





6x + 4y 4x − z −y

4x − z 16 −x + 6z
−y −x + 6z 6y





Evaluation the Hessian matrix by interval arithmetic results in

∇2f (x , y , z) ⊆





[16, 26] [7, 12] −[1, 2]
[7, 12] 16 [−3, 4]
− [1, 2] [−3, 4] [6, 12]





Now, both sufficient conditions for positive definiteness succeed.
Thus, we can conclude that f si convex on the interval domain.
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Conclusion

Interval computation offers:

nice theory, methods and applications

many open problems

interdisciplinarity
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