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Mean value form

Theorem
Let f :R"— R, x €IR"” and a € x. Then

f(x) C f(a)+ VF(x)T(x — a),

Proof.
By the mean value theorem, for any x € x there is ¢ € x such that

f(x) = f(a) + VFf(c)"(x — a) € f(a) + VF(x)T(x — a). O]
Improvements

@ successive mean value form
f(X) g f(a) + f):l(xl) az, ..., a,,)(x1 - al)
+ f):z(xl,x2, az...,an)(x2—a2)+...
+ f;n(xl, ey Xn—1,Xn)(Xp — an).

@ replace derivatives by slopes




Slope form enclosure

f(x) C f(a) + S(x,a)(x — a),

f(x)—f(a) if
S(X, a) = { x—a IT X # a,

where a € x and

f'(x) otherwise.

Remarks
@ Slopes can be replaced by derivatives, but slopes are tighter.

@ Slopes can be computed in a similar way as derivatives.

function its slope S(x, a)
X 1
f(x) £ g(x) St(x,a) £ Sg(x, a)
f(x)-&(x)  Se(x; a)g(a) + f(x)S(x, a)
efx) e’ S¢(x, a)




Example
f(x)=3x>—x+ 13, x=[1,7]
fl(x) =[-3.3]. Se(x,x) = 3.4
YA
51
4|
3
2|
1t
;1 0 X

Notice: Slopes cannot be used for monotonicity checking. |
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Nonlinear Equations

Problem statement
Find all solutions to
fi(xt,...,x,) =0, j=1,...,j°
inside the box x% € TR",
Theorem (Zhu, 2005)

For a polynomial p(x1,...,xn), there is no algorithm solving

n
p(x1,. .., xn)%+ Zsinz(wx,-) =0.
i=1

Proof.
From Matiyasevich's theorem solving the 10th Hilbert problem. O

4

Remark

Using the arithmetical operations only, the problem is decidable by Tarski's
theorem (1951).

v
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Interval Newton method

Classical Newton method
...Is an iterative method

Xkl = Xk — Vf(xk)_lf(xk), k=0,...

Cons
@ Can miss some solutions

@ Not verified (Are we really close to the true solution?)

Interval Newton method — Stupid intervalization

xktl = xk — Vf(xk)_lf(xk), k=0,...

Interval Newton method — Good intervalization
N(x*, xK) := xk — VF(x*)71F(x5),
xk1.= xkn N(xk,xk), k=0,...




Interval Newton method

Theorem (Moore, 1966)
If x,x° € x and f(x) = 0, then x € N(x°, x).

Proof.

By the Mean value theorem,
fi(x) — £(°) = VAi(e)T(x —x%), Vi=1,...,n.

If x is a root, we have

~fi(x°) = Vfi(c) T (x = x°).
Define A € R™ " such that its ith row is equal to Vf(c;)". Hence
—f(x°) = A(x = x°),
from which
x=x0 — A7 (x%) € X0 — VF(x) 7 F(x°).
Notice, that this does not mean that there is ¢ € x such that

() = VF()(x— x°). g




Interval Newton method

Theorem (Nickel, 1971)
If ) # N(x°, x) C x, then there is a unique root in x and Vf(x) is regular.

Proof.
“Regularity.” Easy.

“Existence.” By Brouwer's fixed-point theorem.

[Any continuous mapping of a compact convex set into itself has a fixed point.]

“Uniqueness.” If there are two roots y; # y» in x, then by the Mean value
theorem,

fy1) = f(y2) = A1 — »2)
for some A € Vf(x);. Since f(y1) = f(y2) = 0, we get

Aly1 —y2) =0
and by the nonsingularity of A, the roots are identical. O
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Interval Newton method

Practical implementation
Instead of

N(Xk,xk) = xk — Vf(xk)_lf(xk)
let N(x*, x¥) be an enclosure of the solution set (with respect to x) of

VF(x)(x — x°) = —f(x9).

Extended interval arithmetic

So far : ]
12,15
—2.3] = (—00, 00).
Now,
a/b:={a/b:ac a,0+#bc b}.
So,
[[1_2;;] — (—o0, —6] U [4, ).

4
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Interval Newton method

Example

f(x) =x3—x+0.2

In six iterations precision 107! (quadratic convergence).
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Interval Newton method

Example (Moore, 1993)

y)\

f(x) = x? +sin(x3)

1.0

| /\_/
O . .

o5l \/ 0.5 1.0

—1.0%F

All 318 roots of in the interval [0.1,1] found with accuracy 1071°.
The left most root is contained in [0.10003280626, 0.10003280628].

Summary

o N(x°, x) contains all solutions in x

o If x N N(x% x) = 0, then there is no root in x

o If ) # N(x°, x) C x, then there is a unique root in x
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Krawczyk method

Krawczyk operator
Let x° € x and C € R™", usually C =~ V£(x°)~1. Then

K(x) := x° — CF(x°) + (I, — CVF(x))(x — x°).

Theorem
Any root of f(x) in x is included in K(x).

Proof.
If x! is a root of f(x), then it is a fixed point of
g(x) == x — Cf(x).
By the mean value theorem,
g(x') € g(x°) + Vg (x)(x! —x°),
whence
x! € g(x) C g(x°) + Vg(x)(x — x°)
= x% — CF(x°) + (I, — CVF(x))(x — x°). O




Krawczyk method

Theorem

If K(x) C x, then there is a root in x.

Proof.

Recall
g(x) == x — Cf(x).
By the proof of the previous Theorem, K(x) C x implies
g(x) < x.
Thus, there is a fixed point x° € x of g(x),
g(x%) = x% — Cf(x%) = x°,

so x is a root of f(x). O
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Krawczyk method

Theorem (Kahan, 1968)

If K(x) C int x, then there is a unique root in x and Vf(x) is regular.

Recall Theorem from “c-inflation” (for solving Ax = b)
Let x € IR" and C € R"™". If

K(x) = Cb+ (I, — CA)x C int x,

then C is nonsingular, A is regular, and ¥ C x.

Proof.

The inclusion K(x) C int x reads
—CF(x°) + (I, — CVF(x))(x — x°) C int (x — x°)
Apply the above Theorem for
b:=—f(x°), A:=Vf(x), x:=x—x°

We have that V£ (x) is regular, which implies uniqueness. O

V.
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More general constraints

Constraints
@ equations hj(x) =0,i=1,...,/
@ inequalities gj(x) <0, j=1,...,J
@ may be others, but not considered here
(#, quantifications, logical operators, lexicographic orderings, ... )

Problem
Denote by ¥ the set of solutions in an initial box x° € IR"?
Problem: How to describe 2?7

Subpavings
Split x into a union of three sets of boxes such that
@ the first set has boxes provably containing no solution
@ the second set has boxes that provably consist of only solutions

@ the third set has boxes which may or may not contain a solution

18 /60



Subpaving Example

Example
X+ y? < 16,
X +y*>9
I
Figure: Exact solution set Figure: Subpaving approximation
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Subpaving Example

Example

. | £ g
1,;7 [
2 2 E
Tt
Figure: Exact solution set Figure: Subpaving approximation
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Subpaving Algorithm

Branch & Bound approach
o divide x° recursively into sub-boxes,
@ remove sub-boxes with provably no solutions

@ contract sub-boxes

Some simple tests
o Test for x C X:
@ no equations and g;(x) <0V
@ Test for x NX = (:

o 0 & hi(x) for some i
° gj(x) > 0 for some j

Also very important
@ Which box to choose (data structure fo £)?

@ How to divide the box? (which coordinate, which place, how many
sub-boxex)

4
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A Simple Contractor — Constraint Propagation

Example
Consider the constraint
x+yz=7, x€l0,3], y€[3,5], z€[24].
@ Express x
x=T7—yzeT—]3,5][2,4] =[-13,1].
Thus, the domain for x is [0,3] N [-13,1] = [0, 1].
@ Express y
y=(7—x)/z € (7—[0,1])/[2,4] = [1.5, 3.5].
Thus, the domain for y is [3,5] N [1.5, 3.5] = [3, 3.5].
o Express z
z=(7—-x)/y € (7 —10,1])/[3, 3.5] = [%,% .
Thus, the domain for z is [2,4] N [, £] = [2, £].
No further propagation needed as each variable appears just once.

760



Other Techniques

Other techniques

@ Various kinds of consistencies (2B, 3B,...), shaving,...

Example (thanks to Elif Garajova)

1 1

e=1.0 e=0.5 e =0.125
time: 0.952 s time: 2.224 s time: 9.966 s
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Free constraint solving software

o Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html
@ Quimper (by Gill Chabert and Luc Jaulin),
written in an interval C4++ library IBEX,
a language for interval modelling and handling constraints,
http://www.emn.fr/z-info/ibex

@ RealPaver (by L. Granvilliers and F. Benhamou),
a C++ package for modeling and solving nonlinear and nonconvex
constraint satisfaction problems,

http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver
p://pagesp P P g p

@ RSolver (by Stefan Ratschan),
solver for quantified constraints over the real numbers,
implemented in the programming language OCaml,
http://rsolver.sourceforge.net/

24 /60
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Introduction

Rigorous computation
What and why?

Can we obtain rigorous numerical results by using floating-point
arithmetic?

Yes, by extending to interval arithmetic. Direct usage is however not
effective!

Example (Amplification factor for the interval Gaussian elimination)

n=20 n=50 n=100 n=170
102 10° 1010 1016

Advise

Postpone interval computation to the very end.

27 /60



Verification

Compute a solution by floating-point arithmetic, and then to verify that
the result is correct or determine rigorous distance to a true solution.

Typically, we can prove uniqueness (=the problem is well posed).
Therefore, verifying singularity of a matrix cannot be performed!

What we will do

As an example, we show a verification method for the problem of finding a
root of a function f: R” — R".

4

Problem statement

Given x* € R" a numerically computed (=approximate) solution of
f(x) =0, find a small interval 0 € y € IR" such that the true solution lies
in x*+y.

28 /60



[llustration of Verification

Example

lllustration of the verification of x* to be a solution of f(x) = 0.

X2
A(x) =0 f(x) =0
3 L
2 {
1 L
AN
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Ingredients

Brouwer fixed-point theorem

Let U be a convex compact set in R” and g: U — U a continuous
function. Then there is a fixed point, i.e.,, Ix € U : g(x) = x.

Observation

Finding a root of f(x) is equivalent to finding a fixed-point of the function
gly)=y— C-f(x*+y), where C is any nonsingular matrix of order n.

v

Perron theory of nonnegative matrices
o If |A| < B, then p(A) < p(B).
(< is meant entrywise and p(+) is the spectral radius)
o If A>0, x >0 and Ax < ax, then p(A) < a.

Lemma
If z+ Ry C inty, then p(R) < 1 for every R € R.

Proof. |R|y® < y®, whence by Perron theory p(R) < 1. DJ




Theorem
Suppose 0 € y. Now if
—C-f(x*)+ (I — C-VFf(x*+y))-yCinty,
then:
o C and every matrix in Vf(x* 4+ y) are nonsingular, and

@ there is a unique root of f(x) in x* +y.

Proof.

By the mean value theorem,
f(x*+y)ef(x)+VF(x*+y)y.
By the assumptions, the function
gy)=y—C-f(x*+y)e -C-f(x)+ (I - C-VFf(x*+y))y Cinty

has a fixed point, which shows “existence”.

By Lemma, C and Vf(x* +y) are nonsingular, implying “uniqueness”. [J
D,




Implementation
o take C ~ Vf(x*)~! (numerically computed inverse),

@ take y := C - f(x*) and repeat inflation

y = (_ C-F(x*)+(I— C-VF(x"+y)) -y> [0.9,1.1]+1072°[—1,1]

until the assumption of Theorem are satisfied.
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Verification of a Linear System of Equations

Problem formulation
Given a real system Ax = b and x* approximate solution, find y € TR"

such that A='h € x* + y. )

N
z
N

N\ x1

Example
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Verification of a Linear System of Equations

Given the system Ax = b and an approximate solution x*.

Theorem
Suppose 0 € y. Now if
C(b— Ax*)+ (I — CA)y C inty,
then:
o C and A are nonsingular,

@ there is a unique solution of Ax = b in x* + y.

Proof.
Use the previous result with f(x) = Ax — b.

Implementation

@ take C ~ A~! (numerically computed inverse),

34 /60



Verification of a Linear System of Equations

e-inflation method (Caprani and Madsen, 1978, Rump, 1980)

Repeat inflating y := [0.9,1.1]x + 1072°[—1,1] and updating
x:=C(b—Ax*)+ (I — CA)y

until x C inty.

Then, ¥ C x* + x.

Results

@ Verification is about 7 times slower than solving the original problem

(for random instances of dimension 100 to 2000).

35/60




Verification of a Linear System of Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., aj =

o —+), and b := Ae.

Then Ax = b has the solution x = e = (1,...,1)".

Approximate solution by

Matlab:

0.999999999235452
1.000000065575364
0.999998607887449
1.000012638750021
0.999939734980300
1.000165704992114
0.999727989024899
1.000263042205847
0.999861803020249
1.000030414871015

Enclosing interval by e-inflation method (2 it-

erations):

[ 0.99999973843401, 1.00000026238575]
[ 0.99999843048508, 1.00000149895660]
[ 0.99997745481481, 1.00002404324710]
[ 0.99978166603900, 1.00020478046370]
[ 0.99902374408278, 1.00104070076742]
[ 0.99714060702796, 1.00268292103727]
[ 0.99559932282378, 1.00468935360003]
[ 0.99546972629357, 1.00425202249136]
[ 0.99776781605377, 1.00237789028988]
[ 0.99947719419921, 1.00049082925529]
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Verification of a Linear System of Equations

Challenge

@ verification for large systems
(one cannot use preconditioning by the inverse matrix)

References

[ S.M. Rump.
Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica, 19:187-449, 2010.
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Tolerable Solutions

Motivation
So far, existentially quantified interval systems

2 :={xeR":JA€ Adbe b: Ax = b}.

Now, incorporate universal quantification as well!

Definition (Tolerable solutions)

A vector x € R" is a tolerable solution to Ax = b if for each A € A there
is b € b such that Ax = b.

In other words,

VAe Adbe b: Ax = b.

Equivalent characterizations
o Ax C b,
o |A°x — b°| < —AB|x| + bA.
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Tolerable Solutions
Theorem (Rohn, 1986)

A vector x € R" js a tolerable solution if and only if x = x; — x», where

Axi — Axa < b, Axg — Axa > b, x1,x > 0.

Proof.
“<" Let A€ A. Then

Ax = Ax; — Axs < Ax; — Axp < B,
Ax = Ax; — Axo > Ax1 — Axo > b
Thus, Ax € b and Ax = b for some b € b.

“=" Let x € R" be a tolerable solution. Define x; := max{x, 0} and
xp := max{—x, 0} the positive and negative part of x, respectively. Then
X =x1 — X, |X| = x1 + x2, and |Ax — b¢| < —AL|x| + b2 draws

AS(x; — x0) — b < —AB(x1 + x2) + b2,
—A(x1 — x2) + b¢ < —AP(x1 4 x0) + b2, O
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Tolerable Solutions — Application

Example (Leontief’s Input—Output Model of Economics)

@ economy with n sectors (e.g., agriculture, industry, transportation,
etc.),

® sector i produces a single commodity of amount x;,

@ production of each unit of the jth commodity will require aj;
(amount) of the ith commodity

@ d; the final demand in sector i.
Now the model draws
X; = aj1x1 + - -+ + aipxp + di.
or, in a matrix form
x = Ax+d.
The solution x = (I, — A)~1d = >"32 , AXd is nonnegative if p(A) < 1.

Question: Exists x such that for any A € A thereis d € d: (I, — A)x = d?

41/60



AE Solutions

Quantified system Ax = b
@ each interval parameter a;; and b; is quantified by V or 3
o the universally quantified parameters are denoted by A", b,
o the existentially quantified parameters are denoted by A7, b>
o the system reads (A" + A”)x = b" + b’

Definition (AE solution set)

ZAE = {X e R":
VA" € A'Vb" € b"3AT € A73bT € b7 (A7 + A7)x = b" + b7},

v
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AE Solutions

Theorem (Shary, 1995)

ZAE:{XGR”:AVX—bvng—AHX}. (1)

4

Proof.
Yae={xeR": VA" € ATV € b"IA € A°Ib € b’ : A'x— b" = b> — A’x}
={xeR": VA" € A"Vb" € b" : A'x — b” € b” — A'x}
:{XER":AVx—ngbH—AHX}. O

Theorem (Rohn, 1996)
Yae = {x € R": [A° — b°| < ((AF)2 — (A)2)|x| + (b7)2 — (b")2}

V.

Proof.
Using (1) and the fact pC ¢ < |p€ — q¢| < & — p?, we get
(A% — b7)< — (b7 — A%X)<| < (A% — b7)" — (b” — AYX)"
= (A2 x|+ b2 — (AV)2x| - b"2. O

4 00




AE Solutions

Example

(B2 Tmar )<= (Casr) (oo o) = (Cos):

X2 X2

AE solution set. Tolerable solution set.
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Eigenvalues of Symmetric Interval Matrices

A symmetric interval matrix
A ={AcA:A=AT}
Without loss of generality assume that A= AT, A= ZT, and AS # ().

Eigenvalues of a symmetric interval matrix
Eigenvalues of a symmetric A € R™": A\;(A) > --- > \p(A).
Eigenvalue sets of A° are compact intervals

Ai(AS) = {)\,-(A): AeAS}, i=1,....n

Theorem
Checking whether 0 € X;(A®) for some i = 1,...,n is NP-hard.

Proof.

0
AT

S
A is singular iff M> = < 'g) is singular (has a zero eigenvalue). [
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Eigenvalues — An Example

Example
Let
[1,2] © 0
AcA=| 0 [7,8] 0
0 0 [410]

What are the eigenvalue sets?
We have A;(A°) = [7,10], A2(A°) = [4,8] and A3(A°) = [1,2].

0 1 2 3 4 5 6 7 8 9 10 ¢
Ai(A) Aa(A) A3(A)

Eigenvalue sets are compact intervals. They may intersect or equal.
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Eigenvalues — Some Exact Bounds

Theorem (Hertz, 1992)

We have
A (A%) = max A (AC + diag(z) A2 diag(2)),
ze{£1}r
A (A%) = min A, (AC — diag(z) A% diag(z)).
ze{£1}r
Proof.

“Upper bound.” By contradiction suppose that there is A € A such that

A1(A) > ngii(} M(A;), |where A, = A° + diag(z)A? diag(z2)
ze n

Thus Ax = A\1(A)x for some x with ||x||> = 1.
Put z* := sgn(x), and by the Rayleigh—-Ritz Theorem we have

AM(A) = xTAx < xTA,-x

<  max yTAz*y:)\l(Az*). O
yillyl2=1

4
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Eigenvalues — Some Other Exact Bounds

Theorem

A1 (A%) and X,(A®%) are polynomially computable by semidefinite
programming with arbitrary precision.

Proof.

We have
An(A%) = maxa subject to A — al, is positive semidefinite, A € A°.
Consider a block diagonal matrix M(A, ) with blocks
A—aly, ajj— ay, 35— aj, 1 <.
Then the semidefinite programming problem reads

An(A%) = maxa subject to M(A,«) is positive semidefinite.
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Eigenvalues — Enclosures

Theorem
We have

Ai(A%) C [N(AS) — p(AR), Mi(AS) + p(AR)], i=1,...,n.

Proof.
Recall for any A, B € R™",

Al<B = p(A) < p(|A]) < p(B),
and for A, B symmetric (Weyl's Theorem)
Ai(A) + An(B) < M(A+ B) < M(A) + Mi(B), i=1,....n.
Let A€ A%, so |A— A°| < A2, Then
Ai(A) = Ai(AS + (A = A%)) < Ai(A) + M\ (A - AY)
< M(A) + plIA — Al) < N(A) + pl(AR).

Similarly for the lower bound. ]
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Eigenvalues — Easy Cases

Theorem
@ [f AC is essentially non-negative, i.e., A,?j > 0Vi#]j, then
A1 (A%) = M\ (A).
Q IFAL s diagonal, then
A1(A%) = M(A), A, (A%) = An(A).

Proof.

© For the sake of simplicity suppose A® > 0. Then VA € A° we have
|A] < A, whence

A1(A) = p(A) < p(A) = M1 (A).
© By Hertz's theorem,

Ai(A%) = jmax Ja(A°+ diag(z)A® diag(2)),

= M (A + A%) = )\ (A). O
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Positive Semidefiniteness

A® is positive semidefinite if every A € A° is positive semidefinite. J
Theorem
The following are equivalent

@ A° is positive semidefinite,

Q A, = A° — diag(z)A2 diag(z) is positive semidefinite ¥z € {£1}",
Q xTAx — |x|TA2|x| > 0 for each x € R".

Proof.
“(1) = (2)" Obvious from A, € A°.
“(2) = (3)" Let x € R" and put z := sgn(x). Now,
xTAx — |x|TAB|x| = xT A°x — x T diag(z) A2 diag(z)x = x"A,x > 0.
“(3) = (1) Let A€ AS and x € R”. Now,
xTAx = xTAx 4+ xT(A — A%)x > xTA°x — |x T (A — A%)x|
> xTAx — |x|TA®|x| > 0.




Positive Definiteness
A° is positive definite if every A € A° is positive definite. J
Theorem

The following are equivalent

@ A° is positive definite,

Q A, = A° — diag(z)A? diag(z) is positive definite for each z € {+1}",
Q xTAx — |x|TA®|x| > 0 for each 0 # x € R",
@ A€ is positive definite and A is regular.

Proof.

‘(1) & (2) < (3)" analogously.

“(1) = (4)" If there are A € A and x # 0 such that Ax = 0, then
0=xTAx=xT3(A+AT)x,

and so %(A + AT) € A° is not positive definite.

“(4) = (1)" Positive definiteness of A< implies \;(A°) > 0 Vi, and
regularity of A implies X;(A°) > 0 Vi.
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Complexity

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of A® is co-NP-hard.

Theorem (Rohn, 1994)

Checking positive definiteness of A is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive definite matrix in A° is a polynomial
time problem.

Proof.

There is a positive definite matrix in A% iff \,(A°) > 0.
So we can check it by semidefinite programming. ]

54 /60



Sufficient Conditions

Theorem
@ A° is positive semidefinite if X,(AS) > p(AR).
@ A’ is positive definite if A\,(AS) > p(AR).

@ A% is positive definite if A€ is positive definite and
p(I(A°)HA%) < 1.

Proof.

@ A° is positive semidefinite iff \,(A%) > 0.
Now, employ the smallest eigenvalue set enclosure

An(A®) C [An(A) = p(A%), An(A) + p(A%)].

© Analogous.

© Use Beeck's sufficient condition for regularity of A. O
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Application: Convexity Testing

Theorem

A function f: R" — R is convex on x € IR" iff its Hessian V2f(x) is
positive semidefinite Vx € int x.

Corollary

A function f: R" + R is convex on x € IR" if V2f(x) is positive
semidefinite.
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Application: Convexity Testing

Example
Let
f(x,y,z) = x>+ 2x%y — xyz + 3yz> + 8y?,
where x € x =[2,3], y € y = [1,2] and z € z = [0, 1]. The Hessian of f
reads
6x+4y 4x-—z —y
V3f(x,y,z) = | 4x —z 16 —x + 6z
—y —x + 6z 6y
Evaluation the Hessian matrix by interval arithmetic results in
[16,26] [7,12] —[1,2]
V3f(x,y,z) C | [7,12] 16 [-3,4]
Now, both sufficient conditions for positive definiteness succeed.
Thus, we can conclude that f si convex on the interval domain.
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Next Section

© Conclusion
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Conclusion

Interval computation offers:
@ nice theory, methods and applications
@ many open problems

@ interdisciplinarity
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