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Ostrava, 30. ledna – 3. února 2017

1 / 49

http://kam.mff.cuni.cz/~hladik/


Outline

1 Motivation

2 Interval Computations

3 Interval Functions

4 Interval Linear Equations – Solution Set

5 Interval Linear Equations – Enclosure Methods

6 Regularity of Interval Matrices

7 Parametric Interval Systems

2 / 49



Next Section

1 Motivation

2 Interval Computations

3 Interval Functions

4 Interval Linear Equations – Solution Set

5 Interval Linear Equations – Enclosure Methods

6 Regularity of Interval Matrices

7 Parametric Interval Systems

3 / 49



Interval Computation

What is interval computation

Solving problems with interval data
(or using interval techniques for non-interval problems)

What is not interval computation

stochastic computation

fuzzy computation

Interval paradigm

Take into account all possible realizations rigorously.

Where interval data do appear

1 numerical analysis (handling rounding errors)

2 computer-assisted proofs

3 global optimization

4 modelling uncertainty
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Numerical Analysis

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .
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Computer-Assisted Proofs

Kepler conjecture

What is the densest packing of balls? (Kepler,
1611)

That one how the oranges are stacked in a shop.

The conjecture was proved by T.C. Hales (2005).

Double bubble problem

What is the minimal surface of two given volumes?

Two pieces of spheres meeting at an angle of 120◦.

Hass and Schlafly (2000) proved the equally sized case.
Hutchings et al. (2002) proved the general case.
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Global Optimization

Rastrigin’s function f (x) = 20 + x
2
1 + x

2
2 − 10(cos(2πx1) + cos(2πx2))
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Further Sources of Intervals

Mass number of chemical elements (sue to several stable isotopes)

[12.0096, 12.0116] for the carbon

physical constants

[9.78, 9.82]ms−2 for the gravitational acceleration

mathematical constants

π ∈ [3.1415926535897932384, 3.1415926535897932385].

measurement errors

temperature measured 23◦C± 1◦C

discretization

time is split in days
temperature during the day in [−8, 3]◦C for Ostrava in January

missing data

What was the temperature in Ostrava on January 31, 1999?
Very probably in [−25, 15]◦C.

processing a state space

find robot singularities, where it may breakdown
check joint angles [0, 180]◦.
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Interval Computations

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

Main problem

Let f : Rn 7→ R
m and x ∈ IR

n. Determine the image

f (x) = {f (x) : x ∈ x}.
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Interval Arithmetic

Interval arithmetic (incl. rounding, IEEE standard)

a + b = [a + b, a + b],

a − b = [a − b, a − b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)], 0 6∈ b.

Theorem (Basic properties of interval arithmetic)

Interval addition and multiplication is commutative and associative.

It is not distributive in general, but sub-distributive instead,

∀a,b, c ∈ IR : a(b + c) ⊆ ab + ac .

Example (a = [1, 2], b = 1, c = −1)

a(b + c) = [1, 2] · (1− 1) = [1, 2] · 0 = 0,

ab + ac = [1, 2] · 1 + [1, 2] · (−1) = [1, 2] − [1, 2] = [−1, 1].
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Images of Functions

Monotone functions

If f : x → R is non-decreasing, then f (x) = [f (x), f (x)].

Example

exp(x) = [exp(x), exp(x)], log(x) = [log(x), log(x)], . . .

Some basic functions

Images x2, sin(x), . . . , are easily calculated, too.

x2 =

{

[min(x2, x2),max(x2, x2)] if 0 6∈ x ,

x2 = [0,max(x2, x2)] otherwise

But. . .

. . . what to do for more complex functions?
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Images of Functions

Notice

f (x) need not be an interval (neither closed nor connected).

Interval hull �f (x)

Compute the interval hull instead

�f (x) =
⋂

v ∈ IR
n : f (x) ⊆ v

v .

Bad news

Computing �f (x) is still very difficult (NP-hard, undecidable).

Interval enclosure

Compute as tight as possible v ∈ IR
n : f (x) ⊆ v .
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Interval Functions

Definition (Inclusion isotonicity)

f : IRn 7→ IR is inclusion isotonic if for every x , y ∈ IR
n :

x ⊆ y ⇒ f (x) ⊆ f (y).

Definition (Interval extension)

f : IRn 7→ IR is an interval extension of f : Rn 7→ R if for every x ∈ R
n :

f (x) = f (x).

Theorem (Fundamental theorem of interval analysis)

If f : IRn 7→ IR satisfies both properties, then

f (x) ⊆ f (x), ∀x ∈ IR
n.

Proof.

For every x ∈ x , one has by interval extension and inclusion isotonicity
that f (x) = f (x) ⊆ f (x), whence f (x) ⊆ f (x).
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Natural Interval Extension

Definition (Natural interval extension)

Let f : Rn 7→ R be a function given by an arithmetic expression. The
corresponding natural interval extension f of f is defined by that
expression when replacing real arithmetic by the interval one.

Theorem

Natural interval extension of an arithmetic expression is both an interval
extension and inclusion isotonic.

Proof.

It is easy to see that interval arithmetic is both an interval extension and
inclusion isotonic. Next, proceed by mathematical induction.
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Natural Interval Extension

Example

f (x) = x2 − x , x ∈ x = [−1, 2].

Then

x2 − x = [−1, 2]2 − [−1, 2] = [−2, 5],

x(x − 1) = [−1, 2]([−1, 2] − 1) = [−4, 2],

Best one?(x − 1
2)

2 − 1
4 = ([−1, 2] − 1

2 )
2 − 1

4 = [−1
4 , 2].

Theorem

Suppose that in an expression of f : Rn 7→ R each variable x1, . . . , xn
appears at most once. The corresponding natural interval extension f (x)
satisfies for every x ∈ IR

n: f (x) = f (x).

Proof.

Inclusion “⊆” by the previous theorems.
Inclusion “⊇” by induction and exactness of interval arithmetic.
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Software

Matlab/Octave libraries

Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/

Versoft (by J. Rohn),
verification software written in Intlab
http://uivtx.cs.cas.cz/~rohn/matlab/

Lime (by M. Hlad́ık, J. Horáček et al.),
interval methods written in Intlab, under development
http://kam.mff.cuni.cz/~horacek/projekty/lime/

Other languages libraries

Int4Sci Toolbox (by Coprin team, INRIA),
A Scilab Interface for Interval Analysis
http://www-sop.inria.fr/coprin/logiciels/Int4Sci/

C++ libraries: C-XSC, PROFIL/BIAS, BOOST interval, FILIB++,. . .

many others: for Fortran, Pascal, Lisp, Maple, Mathematica,. . .
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Solution Set

Interval linear equations

Let A ∈ IR
m×n and b ∈ IR

m. The family of systems

Ax = b, A ∈ A, b ∈ b.

is called interval linear equations and abbreviated as Ax = b.

Solution set

The solution set is defined

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Important notice

We do not want to compute x ∈ IR
n such that Ax = b.

Theorem (Oettli–Prager, 1964)

The solution set Σ is a non-convex polyhedral set described by

|Acx − bc | ≤ A∆|x |+ b∆.
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Proof of Oettli–Prager Theorem (|Acx − bc | ≤ A∆|x |+ b∆)

Let x ∈ Σ, that is, Ax = b for some A ∈ A and b ∈ b. Now,

|Acx − bc | = |(Ac − A)x + (Ax − b) + (b − bc)| = |(Ac − A)x + (b − bc)|

≤ |Ac − A||x |+ |b − bc | ≤ A∆|x |+ b∆.

Conversely, let x ∈ R
n satisfy the inequalities. Define y ∈ [−1, 1]m as

yi =

{

(Acx−bc )i
(A∆|x |+b∆)i

if (A∆|x |+ b∆)i > 0,

1 otherwise.

Now, we have (Acx − bc)i = yi(A
∆|x |+ b∆)i , or,

Acx − bc = diag(y)(A∆|x |+ b∆).

Define z := sgn(x), then |x | = diag(z)x and we can write

Acx − bc = diag(y)A∆ diag(z)x + diag(y)b∆,

or

(Ac − diag(y)A∆ diag(z))x = bc + diag(y)b∆.
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Example of the Solution Set

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4 x1

x2
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Example of the Solution Set

Example





[3, 5] [1, 3] −[0, 2]
− [0, 2] [3, 5] [0, 2]
[0, 2] −[0, 2] [3, 5]









x1
x2
x3



 =





[−1, 1]
[−1, 1]
[−1, 1]



 .

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
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Topology of the Solution Set
Proposition

In each orthant, Σ is either empty or a convex polyhedral set.

Proof.

Restriction to the orthant given by s ∈ {±1}n:

|Acx − bc | ≤ A∆|x |+ b∆, diag(s)x ≥ 0.

Since |x | = diag(s)x , we have

|Acx − bc | ≤ A∆ diag(s)x + b∆, diag(s)x ≥ 0.

Using |a| ≤ b ⇔ a ≤ b, −a ≤ b, we get

(Ac − A∆ diag(s))x ≤ b, (−Ac − A∆ diag(s))x ≤ −b, diag(s)x ≥ 0.

Corollary

The solutions of Ax = b, x ≥ 0 is described by Ax ≤ b, Ax ≥ b, x ≥ 0.

Remark

Checking Σ 6= ∅ and boundedness are NP-hard.
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Interval Hull �Σ

Goal

Seeing that Σ is complicated, compute �Σ instead.

First idea

Go through all 2n orthants of Rn, determine interval hull of restricted sets
(by solving 2n linear programs), and then put together.

Theorem

If A is regular (each A ∈ A is nonsingular), Σ is bounded and connected.

Theorem (Jansson, 1997)

When Σ 6= ∅, then exactly one of the following alternatives holds true:

1 Σ is bounded and connected.

2 Each topologically connected component of Σ is unbounded.

Second idea – Jansson’s algorithm

Check the orthant with (Ac)−1bc and then all the topologically connected.
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Polynomial Cases

Two basic polynomial cases

1 Ac = In,

2 A is inverse nonnegative, i.e., A−1 ≥ 0 ∀A ∈ A.

Theorem (Kuttler, 1971)

A ∈ IR
n×n is inverse nonnegative if and only if A−1 ≥ 0 and A

−1
≥ 0.

Theorem

Let A ∈ IR
n×n be inverse nonnegative. Then

1 �Σ = [A
−1

b,A−1b] when b ≥ 0,

2 �Σ = [A−1b,A
−1

b] when b ≤ 0,

3 �Σ = [A−1b,A−1b] when 0 ∈ b.

Proof.

1 Let A ∈ A and b ∈ b. Since b ≥ b ≥ b ≥ 0 and

A−1 ≥ A−1 ≥ A
−1

≥ 0, we get A
−1

b ≤ A−1b ≤ A−1b.
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Preconditioning

Enclosure

Since Σ is hard to determine and deal with, we seek for enclosures

x ∈ IR
n such that Σ ⊆ x .

Many methods for enclosures exists, usually employ preconditioning.

Preconditioning (Hansen, 1965)

Let C ∈ R
n×n. The preconditioned system of equations:

(CA)x = Cb.

Remark

the solution set of the preconditioned systems contains Σ

usually, we use C ≈ (Ac)−1, which is best in some sense

then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)
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Preconditioning

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

7

14

−7

−14

7 14−7−14 x1

x2
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Preconditioning

Example (typical case)

(

[6, 7] [2, 3]
[1, 2] −[4, 5]

)(

x1
x2

)

=

(

[6, 8]
− [7, 9]

)

2.5

1.5

0.5 1.0−0.5 x1

x2
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Interval Gaussian Elimination

Interval Gaussian elimination = Gaussian elimination + interval arithmetic.

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

Then we proceed as follows
(

[2, 4] [−2, 1] [−2, 2]
[−1, 2] [2, 4] [−2, 2]

)

∼

(

[2, 4] [−2, 1] [−2, 2]
0 [1, 6] [−4, 4]

)

.

By back substitution, we compute

x2 = [−4, 4],

x1 =
(

[−2, 2]− [−2, 1] · [−4, 4]
)

/ [2, 4] = [−5, 5].
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Interval Jacobi and Gauss-Seidel Iterations

Idea

From the ith equation of Ax = b we get

xi =
1
aii

(

bi −
∑i−1

j=1 aijxj −
∑n

j=i+1 aijxj

)

.

If x0 ⊇ Σ is an initial enclosure, then

xi ∈
1
aii

(

bi −
∑

j 6=i aijx
0
j

)

, ∀x ∈ Σ.

Thus, we can tighten the enclosure by iterations

Interval Jacobi / Gauss–Seidel iterations (k = 1, 2, . . . )

1: for i = 1, . . . , n do

2: xk
i := 1

aii

(

bi −
∑

j 6=i aijx
k−1
j

)

∩ xk−1
i ;

3: end for
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Krawczyk Iterations

Krawczyk operator

Krawczyk operator K : IRn → IR
n reads

K (x) := Cb + (In − CA)x

Proposition

If x ∈ x ∩Σ, then x ∈ K (x).

Proof.

Let x ∈ x ∩Σ, so Ax = b for some A ∈ A and b ∈ b. Thus CAx = Cb,
whence x = Cb + (In − CA)x ∈ Cb + (In − CA)x = K (x).

Krawczyk iterations

Let x0 ⊇ Σ is an initial enclosure, and iterate (k = 1, 2, . . . ):

1: xk := K (xk−1) ∩ xk−1;
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ε-inflation

Theorem

Let x ∈ IR
n and C ∈ R

n×n. If

K (x) = Cb + (I − CA)x ⊆ int x ,

then C is nonsingular, A is regular, and Σ ⊆ x .

Proof.

Existence of a solution based on Brouwer’s fixed-point theorem.
Nonsingularity and uniqueness based on the Perron–Frobenius theory.

Remark

A reverse iteration method to the Krawczyk method.

It starts with a small box around (Ac)−1bc , and then iteratively
inflates the box.

Implemented in Intlab v. 6.
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Regularity

Definition (Regularity)

A ∈ IR
n×n is regular if each A ∈ A is nonsingular.

Theorem

Checking regularity of an interval matrix is co-NP-hard.

Forty necessary and sufficient conditions for regularity of A by Rohn
(2010):

1 The system |Acx | ≤ A∆|x | has the only solution x = 0.

2 det(Ac − diag(y)A∆ diag(z)) is constantly either positive or negative
for each y , z ∈ {±1}n.

3 For each y ∈ {±1}n, the system Acx − diag(y)A∆|x | = y has a
solution.

4 . . .
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Regularity – Sufficient / Necessary Conditions

Theorem (Beeck, 1975)

If ρ(|(Ac )−1|A∆) < 1, then A is regular.

Proof.

Precondition A by the midpoint inverse: M := (Ac)−1A. Now,

Mc = In, M∆ = |(Ac)−1|A∆,

and for each M ∈ M we have

|M −Mc | = |M − In| ≤ M∆.

From the theory of eigenvalues of nonnegative matrices it follows

ρ(M − In) ≤ ρ(M∆) < 1,

so M has no zero eigenvalue and is nonsingular.

Necessary condition

If 0 ∈ Ax for some 0 6= x ∈ R
n, then A is not regular. (Try x := (Ac)−1

∗i )
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Parametric Interval Systems

Parametric interval systems

A(p)x = b(p),

where the entries of A(p) and b(p) depend on parameters
p1 ∈ p1, . . . , pK ∈ pK .

Definition (Solution set)

Σp = {x ∈ R
n : A(p)x = b(p) for some p ∈ p}.

Relaxation

Compute (enclosures of) the ranges A := A(p) and b := b(p) and solve

Ax = b.

May overestimate a lot!
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Special Case: Parametric Linear Interval Systems

Parametric linear interval systems

A(p)x = b(p),

where

A(p) =

K
∑

k=1

Akpk , b(p) =

K
∑

k=1

bkpk

and p ∈ p for some given interval vector p ∈ IR
K , matrices

A1, . . . ,AK ∈ R
n×n and vectors b1, . . . , bn ∈ R

n.

Remark

It covers many structured matrices: symmetric, skew-symmetric, Toeplitz
or Hankel.
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Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

f

1

2

3

4

5

42 / 49



Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

K =















































s12

2
+ s13 −

s12

2
−

s12

2
−s13 0 0 0

−

s21

2

s21 + s23

2
+ s24

s21 − s23

2
−

s23

2

s23

2
−s24 0

−

s21

2

s21 − s23

2

s21 + s23

2

s23

2
−

s23

2
0 0

−s31 −

s32

2

s32

2
s31 +

s32 + s34

2
+ s35

s34 − s32

2
−

s34

2
−

s34

2

0
s32

2
−

s32

2

s34 − s32

2

s34 + s32

2
−

s34

2
−

s34

2

0 −s42 0 −

s43

2
−

s43

2
s42 +

s43 + s45

2
0

0 0 0 −

s43

2
−

s43

2
0

s43 + s45

2














































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Parametric Linear Interval Systems – Example

Example

(

1− 2p 1
2 4p − 1

)

x =

(

7p − 9
3− 2p

)

, p ∈ p = [0, 1].

2
4
6

−2
−4
−6
−8

−10
−12
−14
−16
−18

2 4 6 8 10−2−4−6−8−10 x1

x2

0
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Parametric Linear Interval Systems – Solution Set

Theorem

If x ∈ Σp, then it solves

|A(pc)x − b(pc)| ≤
K
∑

k=1

p∆k |Akx − bk |.

Proof.

|A(pc)x − b(pc)| =

∣

∣

∣

∣

K
∑

k=1

p
c
k(A

k
x − b

k)

∣

∣

∣

∣

=

∣

∣

∣

∣

K
∑

k=1

p
c
k(A

k
x − b

k)−

K
∑

k=1

pk(A
k
x − b

k)

∣

∣

∣

∣

=

∣

∣

∣

∣

K
∑

k=1

(pc
k − pk)(A

k
x − b

k )

∣

∣

∣

∣

≤

K
∑

k=1

|pc
k − pk ||A

k
x − b

k | ≤

K
∑

k=1

p
∆
k |A

k
x − b

k |.

Popova (2009) showed that it is the complete characterization of Σp

as long as no interval parameter appears in more than one equation.

Checking x ∈ Σp for a given x ∈ R
n is a polynomial problem via

linear programming.
45 / 49



Parametric Linear Interval Systems – Enclosures

Relaxation and preconditioning – First idea

Evaluate A := A(p), b := b(p), choose C ∈ R
n×n and solve

(CA)x = Cb.

Relaxation and preconditioning – Second idea

Solve A′x = b′, where

A′ :=

K
∑

k=1

(CAk)pk , b′ :=

K
∑

k=1

(Cbk)pk .

Second idea is provably better

Due to sub-distributivity law,

A′ :=
K
∑

k=1

(CAk)pk ⊆ C

( K
∑

k=1

Akpk

)

= (CA).
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Special Case: Symmetric Systems

The symmetric solution set of Ax = b

{x ∈ R
n : Ax = b for some symmetric A ∈ A and b ∈ b}.

Described by 1
2(4

n − 3n − 2 · 2n + 3) + n nonlinear inequalities (H., 2008).

Example

A =

(

[1, 2] [0, a]
[0, a] −1

)

, b =

(

2
2

)

.

2

4

6

−2

2 4 6 8 10 x1

x2

0

A =

(

−1 [−5, 5]
[−5, 5] 1

)

, b =

(

1
[1, 3]

)

.

2

4

−2

2 4−2−4−6 x1

x2

0
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Application: Least Square Solutions

Least square solution

Let A ∈ IR
m×n, b ∈ IR

m and m > n. The least square solution of

Ax = b,

is defined as the optimal solution of

min
x∈Rn

‖Ax − b‖2,

or, alternatively as the solution to

ATAx = ATb.

Interval least square solution set

Let A ∈ IR
m×n and b ∈ IR

m and m > n. The LSQ solution set is defined

ΣLSQ := {x ∈ R
n : ∃A ∈ A ∃b ∈ b : ATAx = ATb}.

Proposition

ΣLSQ is contained in the solution set to ATAx = ATb.
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Application: Least Square Solutions

Proposition

ΣLSQ is contained in the solution set to
(

0 AT

A Im

)(

x
y

)

=

(

0
b

)

. (1)

Proof.

Let A ∈ A, b ∈ b. If x , y solve

AT y = 0, Ax + y = b,

then

0 = AT (b − Ax) = ATb − ATAx ,

and vice versa.

Proposition

Relaxing the dependencies, the solution set to ATAx = ATb is contained
in the solution set to (1).
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