Generalized Regularity and Singularity of Interval Matrices

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

The 6th International Conference on Matrix Analysis and Applications ICMAA 2017, Da Nang, Viet Nam, June 15–18, 2017

Interval Matrices – Motivation

Where interval data do appear

- numerical analysis (handling rounding errors)

 - $\pi \in [3.1415926535897932384, 3.1415926535897932385].$
- constraint solving and global optimization
 - find robot singularities, where it may breakdown check joint angles $[0,180]^{\circ}$
 - find minimum of $f(x) = 20 + x_1^2 + x_2^2 10(\cos(2\pi x_1) + \cos(2\pi x_2))$

- modelling uncertainty
 - $\bullet\,$ temperature measured in Da Nang $29^\circ C \pm 1^\circ C$

Definition

Interval Matrix An interval matrix is the family of matrices

$$\mathbf{A} = \{ A \in \mathbb{R}^{m \times n} : \underline{A} \le A \le \overline{A} \},\$$

The midpoint and the radius matrices are defined as

$$A_c := rac{1}{2}(\underline{A} + \overline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

The set of all interval $m \times n$ matrices is denoted by $\mathbb{IR}^{m \times n}$.

Regularity

 $\mathbf{A} \in \mathbb{IR}^{n \times n}$ is regular if each $A \in \mathbf{A}$ is nonsingular.

Properties

If A ∈ Iℝ^{n×n} is regular, then each realization of Ax = b has a unique solution and the solution set

$$\{x \in \mathbb{R}^n : \exists A \in \mathbf{A} \exists b \in \mathbf{b} : Ax = b\}$$

is a nonempty and bounded (nonconvex) polyhedron.

• Checking regularity is a co-NP-hard problem (Poljak & Rohn, 1988).

AE Regularity

AE quantification

Disjointly split $\boldsymbol{A} \in \mathbb{IR}^{n \times n}$ as

$$\mathbf{A} = \mathbf{A}^{\forall} + \mathbf{A}^{\exists},$$

where

• \mathbf{A}^{\forall} is the interval matrix comprising universally quantified coefficients,

• \mathbf{A}^{\exists} concerns existentially quantified coefficients.

Example

$$oldsymbol{A} = egin{pmatrix} [-1,1]^orall & [1,2]^{\exists} \ 23 & [5,6]^{\exists} \end{pmatrix}$$

Definition

An interval matrix $\mathbf{A} = \mathbf{A}^{\forall} + \mathbf{A}^{\exists}$ is called *AE regular* if

 $\forall A^{\forall} \in \mathbf{A}^{\forall} \exists A^{\exists} \in \mathbf{A}^{\exists} \text{ such that } A = A^{\forall} + A^{\exists} \text{ is nonsingular.}$

Motivation I.

Quantified Interval Linear Programming

min
$$\boldsymbol{c}^T \boldsymbol{x}$$
 subject to $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \ \boldsymbol{x} \geq \boldsymbol{0}$

Traditional Problems

- range of optimal values
- basis stability
- optimal solution set
- robust optimization

AE quantification

- \bullet intensively studied with $\forall\exists$ quantification now,
- robust optimization,
- need for $\forall \exists$ quantification $(\sum_i w_i x_i = 1)$.

Motivation II.

Definition (AE Solvability of Interval Linear Systems)

 $\mathbf{A}^{\forall\exists}x = \mathbf{b}^{\forall\exists}$ is AE solvable if

$$\forall A^{\forall} \in \mathbf{A}^{\forall}, \forall b^{\forall} \in \mathbf{b}^{\forall}, \exists A^{\exists} \in \mathbf{A}^{\exists}, \exists b^{\exists} \in \mathbf{b}^{\exists}:$$

 $(A^{\forall} + A^{\exists})x = b^{\forall} + b^{\exists} \text{ is solvable.}$

Theorem

If $\mathbf{A}^{\forall\exists}$ is AE regular, then $\mathbf{A}^{\forall\exists}x = \mathbf{b}^{\forall\exists}$ is AE solvable for each $\mathbf{b}^{\forall\exists}$. The converse is not true in general.

Example

The counter-example for the converse direction is

$$oldsymbol{A}^{orall}=0, \quad oldsymbol{A}^{\exists}=egin{pmatrix} 0 & [-1,1] \ 0 & [-1,1] \end{pmatrix}.$$

Then $\mathbf{A}^{\forall\exists}$ is not AE regular, but $\mathbf{A}^{\forall\exists}x = \mathbf{b}^{\forall\exists}$ is AE solvable.

AE Regularity

AE Regularity

- is hard to check (generalizes regularity of \mathbf{A}^{\forall})
- even regularity of \mathbf{A}^{\exists} is open problem

Theorem

 \mathbf{A}^{\exists} is regular iff some vertex matrix $(a_{ij} \in \{\underline{a}_{ij}, \overline{a}_{ij}\})$ is nonsingular.

Open Problems

- Is there a simpler characterization?
- What is the computational complexity?

Conjecture

 \mathbf{A}^{\exists} is regular iff it has no submatrix of size $k \times \ell$ that is real and has the rank $k + \ell - n - 1$.

Interval M-matrix

 $A \in \mathbb{R}^{n \times n}$ is an M-matrix if $a_{ij} \leq 0$ for $i \neq j$ and $A^{-1} \geq 0$.

Theorem (\forall case, Barth & Nuding, 1974)

 $\mathbf{A}^{\forall} \in \mathbb{IR}^{n \times n}$ is an M-matrix iff <u>A</u> is an M-matrix and $\overline{A}_{ij} \leq 0$ for $i \neq j$.

Theorem (\exists case) Let $\mathbf{A}^{\exists} \in \mathbb{IR}^{n \times n}$ and define $\tilde{A} \in \mathbf{A}^{\exists}$ as follows $\tilde{a}_{ij} = \begin{cases} \overline{a}_{ij} & \text{if } i = j, \\ \arg\min\{|a_{ij}| : a_{ij} \in \mathbf{a}_{ij}^{\exists}\} & \text{if } i \neq j. \end{cases}$ (*) Then \mathbf{A}^{\exists} is an M-matrix iff \tilde{A} is an M-matrix.

Theorem ($\forall \exists case$)

Denote by $\tilde{A} = \underline{A}^{\forall} + \tilde{A}^{\exists}$ the matrix from (*) corresponding to $\underline{A}^{\forall} + \mathbf{A}^{\exists}$. Then $\mathbf{A}^{\forall\exists}$ is AE M-matrix iff \tilde{A} is M-matrix and $(\overline{A}^{\forall} + \tilde{A}^{\exists})_{ij} \leq 0$ for $i \neq j$.

Interval H-matrix

 $A \in \mathbb{R}^{n \times n}$ is called an H-matrix, if the comparison matrix $\langle A \rangle$ is an M-matrix, where $\langle A \rangle_{ii} = |a_{ii}|$ and $\langle A \rangle_{ij} = -|a_{ij}|$ for $i \neq j$.

Magnitude and Mignitude

$$\begin{split} \max(\boldsymbol{a}) &= \max\{|\boldsymbol{a}| \colon \boldsymbol{a} \in \boldsymbol{a}\} = |\boldsymbol{a}_c| + \boldsymbol{a}_{\Delta}, \\ \min(\boldsymbol{a}) &= \min\{|\boldsymbol{a}| \colon \boldsymbol{a} \in \boldsymbol{a}\} = \begin{cases} 0 & \text{if } 0 \in \boldsymbol{a}, \\ \min(|\underline{a}|, |\overline{a}|) & \text{otherwise.} \end{cases} \end{split}$$

Theorem (\forall case, Neumaier 1984)

Let $\mathbf{A}^{\forall} \in \mathbb{IR}^{n \times n}$ and define $\tilde{A} \in \mathbf{A}^{\forall}$ as follows $\tilde{a}_{ij} = \begin{cases} \min(\mathbf{a}_{ij}^{\forall}) & \text{if } i = j, \\ -\max(\mathbf{a}_{ij}^{\forall}) & \text{if } i \neq j. \end{cases}$

Then \mathbf{A}^{\forall} is an H-matrix iff \tilde{A} is an M-matrix.

Theorem $(\exists case)$

Let $\mathbf{A}^{\exists} \in \mathbb{IR}^{n \times n}$ and define $\widetilde{A} \in \mathbf{A}^{\exists}$ as follows

$$\tilde{\boldsymbol{a}}_{ij} = \begin{cases} \max(\boldsymbol{a}_{ij}^{\exists}) & \text{if } i = j, \\ -\min(\boldsymbol{a}_{ij}^{\exists}) & \text{if } i \neq j. \end{cases}$$

Then \mathbf{A}^{\exists} is an H-matrix iff \tilde{A} is an M-matrix.

Theorem ($\forall \exists case$)

Define the matrix \tilde{A} as follows

$$\tilde{\boldsymbol{a}}_{ij}^{\exists} = \begin{cases} \operatorname{mig}(\boldsymbol{a}_{ij}^{\forall}) + \operatorname{mag}(\boldsymbol{a}_{ij}^{\exists}) & \text{if } i = j, \\ -\operatorname{mag}(\boldsymbol{a}_{ij}^{\forall}) - \operatorname{mig}(\boldsymbol{a}_{ij}^{\exists}) & \text{if } i \neq j. \end{cases}$$

Then $\mathbf{A}^{\forall\exists}$ is an AE H-matrix if and only if \tilde{A} is an M-matrix.

Theorem

If A_c^{\forall} is an M-matrix, then \mathbf{A}^{\forall} is regular iff \mathbf{A}^{\forall} is H-matrix.

Example

For AE quantification, this statement is no longer valid.

$$oldsymbol{A}^{orall \exists} = egin{pmatrix} [0.8,1]^{\exists} & -[0,1]^{orall} \ -1 & 1 \end{pmatrix}.$$

Then $A_c^{\forall\exists}$ is an M-matrix and $\mathbf{A}^{\forall\exists}$ is AE regular, but not an AE H-matrix.

Structured Quantifiers Position

Theorem

The square interval matrix

$$oldsymbol{A}^{orall \exists} = egin{pmatrix} oldsymbol{B}^{orall} & oldsymbol{b}^{\exists} \ oldsymbol{C}^{orall} & oldsymbol{c}^{orall} \end{pmatrix}, ext{ where } b_{\Delta}^{\exists} > 0,$$

is AE regular iff $(\boldsymbol{B}^T \ \boldsymbol{C}^T)^{\forall}$ and $(\boldsymbol{C} \ \boldsymbol{c})^{\forall}$ have full row rank.

Theorem

Let $\boldsymbol{B} \in \mathbb{IR}^{n \times k}$ and $\boldsymbol{C} \in \mathbb{IR}^{n \times (n-k)}$ with $C_{\Delta} > 0$. Then $(\boldsymbol{B}^{\forall} \boldsymbol{C}^{\exists})$ is AE regular iff \boldsymbol{B}^{\forall} has full column rank.

Conjecture

The square interval matrix

$$\begin{pmatrix} \boldsymbol{B}^{\forall} & \boldsymbol{D}^{\exists} \\ \boldsymbol{C}^{\forall} & \boldsymbol{E}^{\forall} \end{pmatrix}, \quad \textit{where} \quad \boldsymbol{D}_{\Delta}^{\exists} > 0,$$

is AE regular iff $(\mathbf{B}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}})^{\forall}$ and $(\mathbf{C} \mathbf{E})^{\forall}$ have full row rank.

Conclusion

Summary

- We introduced a generalized regularity concept of interval matrices.
- Easy to handle cases:
 - M-matrices
 - H-matrices
 - special position of quantifiers

Many Open Problems

- AE regularity of $\mathbf{A}^{\forall\exists}$: characterization, ...
- regularity of \mathbf{A}^{\exists} : complexity, characterization, ...
- structured quantifiers position conjecture
- identifying other polynomial cases