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Next Section

@ Introduction to Interval Computation



Interval Data — Motivation

Where interval data do appear

@ numerical analysis (handling rounding errors)

o 1 € [0.33333333333333, 0.33333333333334]

o 7 € [3.1415926535897932384, 3.1415926535897932385)].
@ constraint solving and global optimization

o find robot singularities, where it may breakdown

check joint angles [0, 180]°
o find minimum of f(x) =20 + x? 4+ x3 — 10(cos(27x1) + cos(2mx,))
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Interval Data — Motivation

Where interval data do appear

@ numerical analysis (handling rounding errors)

9 % € [0.33333333333333, 0.33333333333334]
o 7 € [3.1415926535897932384, 3.1415926535897932385)].

@ constraint solving and global optimization

o find robot singularities, where it may breakdown

check joint angles [0, 180]°

o find minimum of f(x) =20 + x? 4+ x3 — 10(cos(27x1) + cos(2mx,))
@ statistical estimation

o confidence intervals, prediction intervals (future prices,...)
@ measurement errors

o fuel consumption, stiffness in truss construction, velocity (75 &2 km/h)
@ discretization

@ time is split in days

o day range of stock prices — daily min / max

@ missing data




Interval Matrices

Definition (Interval matrix)

An interval matrix is the family of matrices
A={AcR™" A< A<A},
The midpoint and the radius matrices are defined as

1 — 1 —
Ac = §(A+A), Ap = E(A —A).

The set of all interval m x n matrices is denoted by TR™*".

Important notice

We consider intervals in a set sense, no distribution, no fuzzy shape.




Introduction

Linear programming — three basic forms

f(A,b,c) = min c"x subject to Ax = b, x >0,
f(A,b,c) = min c"x subject to Ax < b,
f(A, b, c) = min c"x subject to Ax < b, x > 0.

Interval linear programming
Family of linear programs with A€ A, b € b, ¢ € c, in short

f(A,b,c) = minc’x subject to Ax = b, (x > 0).

The three forms are not transformable between each other!

-

Main goals
@ determine the optimal value range;

@ determine a tight enclosure to the optimal solution set.
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@ Optimal Value Range



Optimal Value Range

Definition
min f(A, b,c) subjectto A€ A, be b, c €,

=
f:=max f(A,b,c) subjectto A€ A, bebh, ccc.

Observation

If f(A, b, c) is continuous on A x b x c, then f and f are finite and
f(A,b,c) = [f,f].

Example (Bereanu, 1978)

max xj subject to x; <[1,2], [-1,1]x; <0, —x; <O0.

The image of the optimal value is {0} U1, 2].

Open problems

How many components of (A, b, c)? Always closed?




Optimal Value Range

Theorem (Wets, 1985, Mostafaee et al., 2016)

Suppose that both interval linear systems
Ax=0, x>0, ¢'x<0
and
ATy <0, b"y>0

have only trivial solution. Then f(A, b, c) is continuous on A x b x c.

Theorem

It is NP-hard to check if the value f is attained for a given f € [f, f].
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Optimal Value Range

Theorem (Vajda, 1961)

We have for type (Ax < b, x >0)
f=minc’x subject to Ax < b, x >0,
f=min¢’ x subject to Ax < b, x > 0.

Theorem (Machost, 1970, Rohn, 1984)
We have for type (Ax = b, x >0)
= min ng subject to Ax < b, Ax > b, x >0,

= max f(Ac— diag(s)Aa, bc + diag(s)ba,<).
se{x1}m

f
7

Theorem (Rohn (1997), Gabrel et al. (2008))
@ checking f = oo is NP-hard
o checking f > 1 is strongly NP-hard (with A, c crisp and f < o)
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Optimal Value Range

Algorithm (Optimal value range [f, f])
© Compute
fi=inf ¢/x—cf|x| subjectto x e M,
where M is the primal solution set.

@ If f = o0, then set f := oo and stop.
© Compute

B:=sup bly+ bily| subjectto y €N,
where N is the dual solution set.
Q If © = oo, then set f := 00 and stop.

© If the primal p_roblem is strongly feasible, then set f = @,
otherwise set f := co.
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Optimal Solution Set

The optimal solution set
Denote by S(A, b, ¢) the set of optimal solutions to

min ¢’ x subject to Ax =b, x >0,

Then the optimal solution set is defined

S=|J 8Abo).
A€A, beb, cec

Goal
Find a tight enclosure to S.

Characterization

By duality theory, we have that x € S if and only if there is some y € R™,
A€ A, be b, and c € ¢ such that

Ax=b, x > 0, ATyS ¢, c'x= bTy,

where Ac A, be b, ccc.

v
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Optimal Solution Set

Example (Garajova, 2016)

The optimal solution set may be disconnected and nonconvex.
Consider the interval LP problem

max xp subject to [—1,1]x;1 +x <0, x» < 1.

X2
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Optimal Solution Set

Theorem (Garajova, H., 2016)

The set of optimal solutions S of the interval linear program (with real A)

min ¢’ x subject to Ax =b, x>0

is a path-connected union of at most 2" convex polyhedra.

Observation

If b is real in addition, then S is formed by a union of some faces of the
feasible set.

Open Problems

@ More about topology of the optimal solution set &
(Is it always polyhedral?),

@ characterization of S,

@ tight approximation of S.
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Basis Stability

Definition
The interval linear programming problem

T

minc' x subjectto Ax=b, x>0,

is B-stable if B is an optimal basis for each realization.

Theorem
B-stability implies that the optimal value bounds are
f = min g,gx subject to Agxp < b, —Agxg < —b, xg >0,
f = max EEX subject to Agxp < b, —Agxg < —b, xg > 0.
Moreover, f(A, b, c) is continuous and f(A, b, c) = [f, f].
Under the unique B-stability, the set of all optimal solutions reads
Agxg < b, —Agxg < —b, xg >0, xy = 0.

(Otherwise each realization has at least one optimal solution in this set.)
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Basis Stability

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAZ Ay > 0T,

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, b€ b, c € c.

Condition C1
@ C1 says that Ag is regular;
@ co-NP-hard problem;
o Beeck’s sufficient condition: p (|((Ac)g) t(Aa)s) < 1.
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Basis Stability

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAZ Ay > 0T,

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, b€ b, c € c.

Condition C2
@ (2 says that the solution set to Agxg = b lies in R";

o sufficient condition: check of some enclosure to Agxg = b.
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Basis Stability

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAZ Ay > 0T,

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, b€ b, c € c.

Condition C3
o C2 says that AE}/ < cnpn, Agy = cp is strongly feasible;
@ co-NP-hard problem;

o sufficient condition:
(Al)y < cy, where y is an enclosure to ALy = cg.

21/32



Basis Stability — Example

Example
Consider an interval linear program

max ([5,6],[1,2]) " x s.t. ( 6,7 —[4, 5]) x < ([18, 19]) , x> 0.
1 1 [6, 7]

@ union of all feasible
sets in light gray,

@ intersection of all
feasible sets in dark
gray,

@ set of optimal
solutions in dotted
area
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Basis Stability — Interval Right-Hand Side

Interval case

Basis B is optimal iff

Cl. Ag is non-singular;

C2. Ag'b >0 for each b € b.
C3. ¢y — cFAZ Ay > 0T,

Condition C1
@ C1 and C3 are trivial
o C2 is simplified to

Az'b >0,

which is easily verified by interval arithmetic

@ overall complexity: polynomial
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Basis Stability — Interval Objective Function

Interval case

Basis B is optimal iff
Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAg Ay > 07 for each c € ¢

Condition C1
o C1 and C2 are trivial
o (3 is simplified to

T T
Any < cn, Agy = cg
or,

(AfAg )es < cp.

@ overall complexity: polynomial
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Applications

Real-life applications

@ Transportation problems with uncertain demands, suppliers, and/or
costs.

Networks flows with uncertain capacities.
Diet problems with uncertain amounts of nutrients in foods.

Portfolio selection with uncertain rewards.

e © ¢ ¢

Matrix games with uncertain payoffs.

Technical applications
@ Tool for global optimization.

@ Measure of sensitivity of linear programs.

Verification

@ Handle rigorously numerics of real-valued linear programs.
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Verification — Motivation

Example (Rump, 1988)

Consider the expression

f = 333.7560 + a2(11a%b% — b5 — 1216* — 2) + 5,568 + %,

with
a=77617, b= 33096.
Calculations from 80s gave
single precision f ~ 1.172603...
double precision f = 1.1726039400531 ...
extended precision f = 1.172603940053178...
the true value f = —0.827386...
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Verification of a system of linear equations

Given a real system Ax = b and x* approximate solution, find
x* € x € IR" such that A=1b € x.

Example

X2

/
7z

28 /32



Verification in Linear Programming

Consider a linear program

T

min ¢’ x subject to Ax = b, x > 0.

Let B* be an optimal basis, f* optimal value and x* optimal solution.
All these are numerically computed.

Verification of the optimal basis (Jansson, 1988)

@ confirmation that B* is (unique) optimal basis,

Verification of the optimal value (Neumaier & Shcherbina, 2004)
o finding f* € f € IR such that f contains the optimal value,

Verification of the optimal solution

@ finding x* € x € IR" such that x contains the (unique) optimal
solution.
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Verification of Optimal Basis

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. cff — cgAgtAy > 0T.

Verification of condition C2
o Compute verification interval xg for Agxg = b,

@ check xg > 0 (resp. xg > 0 for uniqueness)

Verification of condition C3

@ Compute verification interval y for Agy = cB,

o check ¢, —yT Ay >0 (resp. ¢y — y " Ay > 0 for uniqueness).
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Conclusion

Conclusion
Interval linear programming provides techniques for

o studying effects of data variations on optimal value and optimal
solutions

@ processing state space of parameters
@ calculating bounds

@ handling numerical errors
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