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Interval Data – Motivation

Where interval data do appear

numerical analysis (handling rounding errors)
1
3 ∈ [0.33333333333333, 0.33333333333334]
π ∈ [3.1415926535897932384, 3.1415926535897932385].

constraint solving and global optimization

find robot singularities, where it may breakdown
check joint angles [0, 180]◦

find minimum of f (x) = 20 + x21 + x22 − 10(cos(2πx1) + cos(2πx2))
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Interval Data – Motivation

Where interval data do appear

numerical analysis (handling rounding errors)
1
3 ∈ [0.33333333333333, 0.33333333333334]
π ∈ [3.1415926535897932384, 3.1415926535897932385].

constraint solving and global optimization

find robot singularities, where it may breakdown
check joint angles [0, 180]◦

find minimum of f (x) = 20 + x21 + x22 − 10(cos(2πx1) + cos(2πx2))

statistical estimation

confidence intervals, prediction intervals (future prices,. . . )

measurement errors

fuel consumption, stiffness in truss construction, velocity (75± 2 km/h)

discretization

time is split in days
day range of stock prices – daily min /max

missing data
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Interval Matrices

Definition (Interval matrix)

An interval matrix is the family of matrices

A = {A ∈ R
m×n : A ≤ A ≤ A},

The midpoint and the radius matrices are defined as

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all interval m × n matrices is denoted by IR
m×n.

Important notice

We consider intervals in a set sense, no distribution, no fuzzy shape.
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Introduction

Linear programming – three basic forms

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c , in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

The three forms are not transformable between each other!

Main goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.
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Optimal Value Range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c .

Observation

If f (A, b, c) is continuous on A × b × c, then f and f are finite and
f (A,b, c) = [f , f ].

Example (Bereanu, 1978)

max x1 subject to x1 ≤ [1, 2], [−1, 1]x1 ≤ 0, −x1 ≤ 0.

The image of the optimal value is {0} ∪ [1, 2].

Open problems

How many components of f (A,b, c)? Always closed?
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Optimal Value Range

Theorem (Wets, 1985, Mostafaee et al., 2016)

Suppose that both interval linear systems

Ax = 0, x ≥ 0, cT x ≤ 0

and

AT y ≤ 0, bT y ≥ 0

have only trivial solution. Then f (A, b, c) is continuous on A × b × c.

Theorem

It is NP-hard to check if the value f is attained for a given f ∈ [f , f ].
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Optimal Value Range

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.

Theorem (Machost, 1970, Rohn, 1984)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
s∈{±1}m

f (Ac − diag(s)A∆, bc + diag(s)b∆, c).

Theorem (Rohn (1997), Gabrel et al. (2008))

checking f = ∞ is NP-hard

checking f ≥ 1 is strongly NP-hard (with A, c crisp and f < ∞)
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Optimal Value Range

Algorithm (Optimal value range [f , f ])

1 Compute

f := inf cTc x − cT∆ |x | subject to x ∈ M,

where M is the primal solution set.

2 If f = ∞, then set f := ∞ and stop.

3 Compute

ϕ := sup bTc y + bT∆|y | subject to y ∈ N ,

where N is the dual solution set.

4 If ϕ = ∞, then set f := ∞ and stop.

5 If the primal problem is strongly feasible, then set f := ϕ;
otherwise set f := ∞.
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Optimal Solution Set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Goal

Find a tight enclosure to S.

Characterization

By duality theory, we have that x ∈ S if and only if there is some y ∈ R
m,

A ∈ A, b ∈ b, and c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c , cT x = bT y ,

where A ∈ A, b ∈ b, c ∈ c.
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Optimal Solution Set

Example (Garajová, 2016)

The optimal solution set may be disconnected and nonconvex.

Consider the interval LP problem

max x2 subject to [−1, 1]x1 + x2 ≤ 0, x2 ≤ 1.

1

−1

−2

1 2 3 4 5−1−2−3−4−5 0 x1

x2
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Optimal Solution Set

Theorem (Garajová, H., 2016)

The set of optimal solutions S of the interval linear program (with real A)

min cT x subject to Ax = b, x ≥ 0

is a path-connected union of at most 2n convex polyhedra.

Observation

If b is real in addition, then S is formed by a union of some faces of the
feasible set.

Open Problems

More about topology of the optimal solution set S
(Is it always polyhedral?),

characterization of S,

tight approximation of S.
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Basis Stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cT
B
x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Moreover, f (A, b, c) is continuous and f (A,b, c) = [f , f ].

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.

(Otherwise each realization has at least one optimal solution in this set.)
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cT
N
− cT

B
A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C1

C1 says that AB is regular;

co-NP-hard problem;

Beeck’s sufficient condition: ρ
(

|((Ac)B)
−1|(A∆)B

)

< 1.
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cT
N
− cT

B
A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C2

C2 says that the solution set to ABxB = b lies in R
n
+;

sufficient condition: check of some enclosure to ABxB = b.
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cT
N
− cT

B
A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C3

C2 says that AT

N
y ≤ cN , AT

B
y = cB is strongly feasible;

co-NP-hard problem;

sufficient condition:
(AT

N
)y ≤ cN , where y is an enclosure to AT

B
y = cB .
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Basis Stability – Example

Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

x ≤

(

[15, 16]
[18, 19]
[6, 7]

)

, x ≥ 0.

1

2

3

4

1 2 3 4 50 x1

x2 union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

set of optimal
solutions in dotted
area
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Basis Stability – Interval Right-Hand Side

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0 for each b ∈ b.

C3. cT
N
− cT

B
A−1
B

AN ≥ 0T .

Condition C1

C1 and C3 are trivial

C2 is simplified to

A−1
B

b ≥ 0,

which is easily verified by interval arithmetic

overall complexity: polynomial
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Basis Stability – Interval Objective Function

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cT
N
− cT

B
A−1
B

AN ≥ 0T for each c ∈ c

Condition C1

C1 and C2 are trivial

C3 is simplified to

AT

N
y ≤ cN , AT

B
y = cB

or,

(AT

N
A−T

B
)cB ≤ cN .

overall complexity: polynomial
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Applications

Real-life applications

Transportation problems with uncertain demands, suppliers, and/or
costs.

Networks flows with uncertain capacities.

Diet problems with uncertain amounts of nutrients in foods.

Portfolio selection with uncertain rewards.

Matrix games with uncertain payoffs.

Technical applications

Tool for global optimization.

Measure of sensitivity of linear programs.

Verification

Handle rigorously numerics of real-valued linear programs.
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Verification – Motivation

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .
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Verification

Verification of a system of linear equations

Given a real system Ax = b and x∗ approximate solution, find
x∗ ∈ x ∈ IR

n such that A−1b ∈ x .

Example

x1

x2

x∗
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Verification in Linear Programming

Consider a linear program

min cT x subject to Ax = b, x ≥ 0.

Let B∗ be an optimal basis, f ∗ optimal value and x∗ optimal solution.
All these are numerically computed.

Verification of the optimal basis (Jansson, 1988)

confirmation that B∗ is (unique) optimal basis,

Verification of the optimal value (Neumaier & Shcherbina, 2004)

finding f ∗ ∈ f ∈ IR such that f contains the optimal value,

Verification of the optimal solution

finding x∗ ∈ x ∈ IR
n such that x contains the (unique) optimal

solution.
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Verification of Optimal Basis

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cT
N
− cT

B
A−1
B

AN ≥ 0T .

Verification of condition C2

Compute verification interval xB for ABxB = b,

check xB ≥ 0 (resp. xB > 0 for uniqueness)

Verification of condition C3

Compute verification interval y for AT

B
y = cB ,

check cT
N
− yTAN ≥ 0 (resp. cT

N
− yTAN > 0 for uniqueness).
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Conclusion

Conclusion

Interval linear programming provides techniques for

studying effects of data variations on optimal value and optimal
solutions

processing state space of parameters

calculating bounds

handling numerical errors
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