When dependencies do not matter?

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

SCAN 2016, Uppsala, Sweden September 26–29

Dependencies

Example (Well Known)

What is the range of $f(x) = x^2 - x$ on $\mathbf{x} = [-1, 2]$?

Due to dependencies, different expressions lead to different enclosures:

$$\mathbf{x}^2 - \mathbf{x} = [-2, 5],$$

$$\mathbf{x}(\mathbf{x} - 1) = [-4, 2],$$

$$\mathbf{x} - \frac{1}{2})^2 - \frac{1}{4} = [-\frac{1}{4}, 2].$$

Example

What is the range of $f(x) = x^2 - x$ on $\mathbf{x} = [1, 2]$? Now:

$$\mathbf{x}^2 - \mathbf{x} = [-1, 3], \\ \mathbf{x}(\mathbf{x} - 1) = [0, 2], \\ \mathbf{x} - \frac{1}{2})^2 - \frac{1}{4} = [0, 2].$$

Despite dependencies, the second evaluation is exact. (See Hansen, 1997)

Theorem (Rohn, 1994)

A (with $\overline{A} = \overline{A}^T$, $\underline{A} = \underline{A}^T$) is positive (semi-)definite if and only if \mathbf{A}^S is.

Theorem (Rohn, 2014)

Ax = b is strongly¹ solvable if and only if $(D_s A)x \le D_s b$ is strongly solvable for each $s \in {\pm 1}^m$.

Theorem (Li, 2015, and others before)

Ax = b is weakly² solvable if and only if $Ax \le b$, $-Ax \le -b$ is weakly solvable.

¹each realization is solvable ²some realization is solvable

Questions

- Any other examples when dependencies do not matter?
- What are the equivalent transformations?

Theorem

Ax = b is weakly solvable if and only if $(AD_s)x = b$, $x \ge 0$ is weakly solvable for some $s \in {\pm 1}^n$.

Theorem

A system $\mathbf{A}x \leq \mathbf{b}$ is weakly solvable if and only if $(\mathbf{A}D_s)x \leq \mathbf{b}$, $x \geq 0$ is weakly solvable for some $s \in \{\pm 1\}^n$.

Strong Solvability of Standard Interval Linear Systems

Theorem

 $\boldsymbol{A}x = \boldsymbol{b}$ is strongly solvable if and only if the following is strongly solvable

$$Ax^1 - Ax^2 = b$$
, $x^1, x^2 \ge 0$

Theorem

 $Ax \le b$ is strongly solvable if and only if the following is strongly solvable $Ax^1 - Ax^2 \le b$, $x^1, x^2 \ge 0$

Example

By Rohn (2006), Ax = b, $x \ge 0$ is strongly solvable if and only if

$$(A_c + D_s A_\Delta)x = b_c - D_s b_\Delta, \ x \ge 0$$

is solvable $\forall s \in \{\pm 1\}^m$. Next, Ax = b is strongly solvable if and only if

$$(A_{c} + D_{s}A_{\Delta})x^{1} - (A_{c} - D_{s}A_{\Delta})x^{2} = (b_{c} - D_{s}b_{\Delta}), \ x^{1}, x^{2} \ge 0$$

is solvable $\forall s \in \{\pm 1\}^m$. This is a consequence of the above theorem!

AE Solutions and Solvability

Split

$$\boldsymbol{A} = \boldsymbol{A}^{\forall} + \boldsymbol{A}^{\exists}, \quad \boldsymbol{b} = \boldsymbol{b}^{\forall} + \boldsymbol{b}^{\exists},$$

where \mathbf{A}^{\forall} , \mathbf{b}^{\forall} contain the universally quantified coefficients and \mathbf{A}^{\exists} , \mathbf{b}^{\exists} the existential ones.

Definition

$$x \in \mathbb{R}^n$$
 is an *AE* solution of $Ax = b$ if
 $\forall A^{\forall} \in A^{\forall} \forall b^{\forall} \in b^{\forall} \exists A^{\exists} \in A^{\exists} \exists b^{\exists} \in b^{\exists} : (A^{\forall} + A^{\exists})x = b^{\forall} + b^{\exists}.$

Definition

The interval system Ax = b is AE solvable if

$$\forall A^{\forall} \in \boldsymbol{A}^{\forall} \forall b^{\forall} \in \boldsymbol{b}^{\forall} \exists A^{\exists} \in \boldsymbol{A}^{\exists} \exists b^{\exists} \in \boldsymbol{b}^{\exists} : (A^{\forall} + A^{\exists})x = b^{\forall} + b^{\exists} \text{ is solvable.}$$

Analogously for inequalities.

AE Solutions

Theorem

The system $\mathbf{A}x = \mathbf{b}$ has an AE solution if and only if the system

$$(\mathbf{A}D_s)x = \mathbf{b}, \ x \ge 0$$

has an AE solution for some $s \in \{\pm 1\}^n$.

Theorem

The system $\mathbf{A}x \leq \mathbf{b}$ has an AE solution if and only if the system

$$(\boldsymbol{A}D_{\boldsymbol{s}})x\leq \boldsymbol{b}, \ x\geq 0$$

has an AE solution for some $s \in \{\pm 1\}^n$.

Theorem

The system $\mathbf{A}x = \mathbf{b}$ has an AE solution if and only if the system

$$\mathbf{A}x \leq \mathbf{b}, \quad -\mathbf{A}x \leq -\mathbf{b},$$

has an AE solution. Transf. to $\mathbf{A}x^1 - \mathbf{A}x^2 = \mathbf{b}$, $x^1, x^2 \ge 0$ is not possible.

AE Solvability

Theorem

Suppose that $A^{\exists}{}_{\Delta} = 0$. Then $\mathbf{A}x = \mathbf{b}$ is AE solvable if and only if

$$Ax^1 - Ax^2 = b$$
, $x^1, x^2 \ge 0$

is AE solvable.

Theorem

Suppose that $A^{\exists}{}_{\Delta} = 0$. Then $\mathbf{A}x \leq \mathbf{b}$ is AE solvable if and only if $\mathbf{A}x^1 - \mathbf{A}x^2 \leq \mathbf{b}, \ x^1, x^2 \geq 0$

is AE solvable.

Theorem

The system $\mathbf{A}x = \mathbf{b}$, $\mathbf{C}x \leq \mathbf{d}$ is AE solvable if and only if the system

$$y = \mathbf{A}^{\forall} x - \mathbf{b}^{\forall}, \ y = \mathbf{b}^{\exists} - \mathbf{A}^{\exists} x, \ z \ge \mathbf{C}^{\forall} x - \mathbf{d}^{\forall}, \ z \le \mathbf{d}^{\exists} - \mathbf{C}^{\exists} x$$

is AE solvable.

Theorem

The interval system

$$A(p)x = b(p), \quad p \in p$$

is weakly solvable if and only if the interval system

$$(A(p)D_s)x = b(p), \ x \ge 0, \quad p \in p$$

is weakly solvable for some $s \in \{\pm 1\}^n$.

Theorem

The interval system

$$A(p)x \leq b(p), \quad p \in p$$

is weakly solvable if and only if the interval system

$$(A(p)D_s)x \leq b(p), \ x \geq 0, \quad p \in p$$

is weakly solvable for some $s \in \{\pm 1\}^n$.

Parametric Systems

Theorem

The interval system

$$A(p)x = b(p), \quad p \in p$$

is strongly solvable if and only if the system

$$(D_{s}A(p))x\leq D_{s}b(p),\quad p\in oldsymbol{p}$$

is strongly solvable for each $s \in \{\pm 1\}^m$.

Theorem

The interval system

$$A(p)x = b(p), x \ge 0, p \in p$$

is strongly solvable if and only if the interval system

$$(D_sA(p))x \leq D_sb(p), \ x \geq 0, \quad p \in p$$

is strongly solvable for each $s \in \{\pm 1\}^m$.

Let each interval $\boldsymbol{p}_1, \ldots, \boldsymbol{p}_K$ be associated either with \forall , or \exists .

Theorem

The system

$$A(p)x = b(p), \quad p \in p$$

has an AE solution if and only if the system

$$(A(p)D_s)x = b(p), \ x \ge 0, \quad p \in p$$

has an AE solution for some $s \in \{\pm 1\}^n$.

Let each interval $\boldsymbol{p}_1, \ldots, \boldsymbol{p}_K$ be associated either with \forall , or \exists .

Theorem

The system

$$A(p)x \leq b(p), \quad p \in p$$

has an AE solution if and only if the system

 $(A(p)D_s)x \leq b(p), \ x \geq 0, \quad p \in p$

has an AE solution for some $s \in \{\pm 1\}^n$.

Any other examples?

References

E.R. HANSEN,

Sharpness in interval computations, *Reliable Computing*, 3 (1997), No. 1, pp. 17–29.

M. Hladík,

Transformations of interval linear systems of equations and inequalities,

Linear and Multilinear Algebra, (2016), to appear.

W. LI,

A note on dependency between interval linear systems, *Optimization Letters*, 9 (2015), No. 4, pp. 795–797.

J. Rohn,

Miscellaneous results on linear interval systems,

Freiburger Intervall-Berichte 85/9 (1985), Albert-Ludwigs-Universität, Freiburg.