Testing Pseudoconvexity via Interval Computation

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

GOW'16 XIII Global Optimization Workshop, Braga September 4–8, 2016

Motivation

Convexity has many nice properties in the context of optimization. What about its generalizations?

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice differentiable and $S \subset \mathbb{R}^n$ an open convex set. Then f(x) is *pseudoconvex* on S if for every $x, y \in S$ we have

$$abla f(x)^T(y-x) \ge 0 \quad \Rightarrow \quad f(y) \ge f(x).$$

Key Properties

Minimizing pseudoconvex objective functions on convex feasible sets,

- each stationary point is a global minimum,
- each local minimum is a global minimum,
- the optimal solution set is convex.

Illustration

Convex function

Illustration

Pseudoconvex function

Illustration

Quasiconvex function

Problem Formulation

Given a box $\mathbf{x} = [\underline{x}, \overline{x}]$ in \mathbb{R}^n and differentiable $f : \mathbb{R}^n \to \mathbb{R}$. *The question:* Is f(x) pseudoconvex on \mathbf{x} ?

Why testing pseudoconvexity on a box?

In global optimization, feasible sub-domains have often the form of boxes. Verifying pseudoconvexity can help to process a given box (for example, by local search).

Theorem (Ahmadi et al., 2013)

Deciding pseudoconvexity is NP-hard on a class of quartic polynomials.

Pseudoconvexity Characterizations

Theorem (Mereau and Paquet, 1974)

The function f(x) is pseudoconvex on **x** if there is $\alpha \ge 0$ such that

$$M_{\alpha}(x) := \nabla^2 f(x) + \alpha \nabla f(x) \nabla f(x)^T$$

is positive semidefinite for all $x \in \mathbf{x}$.

Denote

$$D(x) := \begin{pmatrix} 0 & \nabla f(x)^T \\ \nabla f(x) & \nabla^2 f(x) \end{pmatrix},$$

and by $D(x)_r$ we denote the principal leading submatrix of size r.

Theorem (Ferland, 1972)

The function f(x) is pseudoconvex on x if $det(D(x)_r) < 0$ for every r = 2, ..., n+1 and for all $x \in x$.

Theorem (Crouzeix and Ferland, 1982)

The function f(x) is pseudoconvex on \mathbf{x} if for each $x \in \mathbf{x}$ either $\nabla^2 f(x)$ is positive semidefinite, or $\nabla^2 f(x)$ has one simple negative eigenvalue and there is $b \in \mathbb{R}^n$ such that $\nabla^2 f(x)b = \nabla f(x)$ and $\nabla f(x)^T b < 0$.

Theorem (Crouzeix, 1998)

The function f(x) is pseudoconvex on x if for each $x \in x$ the matrix D(x) is nonsingular and has exactly one simple negative eigenvalue.

Theorem (Crouzeix, 1998)

The function f(x) is pseudoconvex on \mathbf{x} if for each $x \in \mathbf{x}$ and every $y \neq 0$ such that $\nabla f(x)^T y = 0$ we have $y^T \nabla^2 f(x) y > 0$.

Interval Methods for Testing Pseudoconvexity

Interval Enclosures

Let $\boldsymbol{H} \in \mathbb{IR}^{n \times n}$ (interval matrix) and $\boldsymbol{g} \in \mathbb{IR}^n$ (interval vector) such that $\nabla^2 f(x) \in \boldsymbol{H} \quad \forall x \in \boldsymbol{x},$ $\nabla f(x) \in \boldsymbol{g} \quad \forall x \in \boldsymbol{x}.$

- Such interval enclosures of the Hessian matrix and the gradient can be computed, e.g., by interval arithmetic using automatic differentiation.
- If every H ∈ H is positive semidefinite, then f(x) is convex and we are done. Therefore, we focus on problems such that not every H ∈ H is positive semidefinite.

We will use the symmetric interval matrix

$$oldsymbol{D} := egin{pmatrix} 0 & oldsymbol{g}^T \ oldsymbol{g} & oldsymbol{H} \end{pmatrix}.$$

Methods Based on Mereau and Paquet

Mereau and Paquet suggest to verify positive semidefiniteness of matrices

$$M_{\alpha}(H,g) := H + \alpha g g^{T}, \quad H \in \boldsymbol{H}, \ g \in \boldsymbol{g}$$

for a suitable $\alpha \geq 0$.

Direct Evaluation (MP1)

By interval arithmetic and for a suitable $\alpha \geq \mathbf{0}$ evaluate

$$\boldsymbol{M}(\alpha) := \boldsymbol{H} + \alpha \boldsymbol{g} \boldsymbol{g}^{\mathsf{T}}.$$

Then check whether $M(\alpha)$ is positive semidefinite.

Problems:

- Choice of α .
- Checking positive semidefiniteness of interval matrices is co-NP-hard.
- This approach does not utilize the structure of $M_{\alpha}(x)$.

Sufficient condition is: $\lambda_n(M(\alpha)_c) \ge \rho(M(\alpha)_{\Delta})$.

Theorem

We have that $M_{\alpha}(H,g)$ is positive semidefinite for all $H \in H$ and $g \in g$ if

$$\langle \mathbf{A}^{\mathsf{T}}(\mathbf{H}_{c} + \alpha \mathbf{g}_{c}\mathbf{g}_{c}^{\mathsf{T}})\mathbf{x} - |\mathbf{x}|^{\mathsf{T}}\mathbf{H}_{\Delta}|\mathbf{x}| - 2\alpha |\mathbf{g}_{c}^{\mathsf{T}}\mathbf{x}|\mathbf{g}_{\Delta}^{\mathsf{T}}|\mathbf{x}| \ge 0, \quad \forall \mathbf{x} \in \mathbb{R}^{n}$$

Theorem

We have that $M_{\alpha}(H, g)$ is positive semidefinite for all $H \in H$ and $g \in g$ if $H_c - \operatorname{diag}(z)H_{\Delta}\operatorname{diag}(z) + \alpha(g_cg_c^T - g_cg_{\Delta}^T\operatorname{diag}(z) - \operatorname{diag}(z)g_{\Delta}g_c^T)$ is positive semidefinite for every $z \in \{\pm 1\}^n$.

Structure-Oriented Method (MP2)

Based on the above exponential formula.

Ferland suggests to check that for each symmetric $D \in \mathbf{D}$ and for each r = 2, ..., n + 1 we have $det(D_r) < 0$.

Theorem

It is co-NP-hard to check whether det(D) < 0 for every symmetric $D \in \mathbf{D}$.

The Method (F)

Check

$$\det((D_r)_c) < 0 \quad \text{and} \quad \rho(|(D_r)_c^{-1}|(D_r)_{\Delta}) < 1$$

for each r = 2, ..., n + 1.

Method Based on Crouzeix and Ferland

For *H* symmetric, the condition that there is *b* such that Hb = g, $g^Tb < 0$ is equivalent to

$$\det(D) = \det egin{pmatrix} 0 & g^{\mathcal{T}} \ g & \mathcal{H} \end{pmatrix} < 0.$$

This gives us an equivalent condition:

Theorem

The function f(x) is pseudoconvex on x if for each symmetric $D \in D$ we have det(D) < 0, and each symmetric $H \in H$ is nonsingular and has at most one simple negative eigenvalue.

The Method (CF) The function f(x) is pseudoconvex on x if $\det(D_c) < 0$, $\rho(|D_c^{-1}|D_{\Delta}) < 1$, and $0 < \lambda_{n-1}(H_c) - \rho(H_{\Delta})$.

Ferland suggests to check that the *n*th largest eigenvalue of every symmetric matrix $D \in \mathbf{D}$ is positive.

Theorem

Checking that the nth largest eigenvalue of every symmetric matrix $D \in \mathbf{D}$ is positive is a co-NP-hard problem even on the class of problems with $\mathbf{g} = 0$, H_c symmetric positive definite and entrywise nonnegative, and H_{Δ} consisting of ones.

The Method (C)

The function f(x) is pseudoconvex on x if $0 \notin g$ and $\lambda_n(D_c) > \rho(D_\Delta)$.

Numerical Experiments

Example (Random choices of H and g)

n =dimension, d =radius of H and g,

 $\boldsymbol{H} := \boldsymbol{H} - \gamma \boldsymbol{I}_n$ minimally to fail positive semidefiniteness.

		success rate (in %)						time (in 10 ⁻³ sec.)				
n	d	MP1	MP2	F	CF	С	MP1	MP2	F	ĊF	С	
5	1	0	21.2	35.7	40.7	43.5	1.12	9.32	2.14	0.835	0.644	
10	1	0	3.2	9.4	11.0	29.3	0.889	49.8	3.71	0.831	0.669	
15	1	0	0.3	1.0	1.3	20.3	0.958	427	5.34	0.860	0.694	
20	1	0	0	0	0	11.8	1.32	3085	7.43	1.20	0.775	
5	0.1	47	52	66.8	67.7	65.4	0.978	6.45	2.24	0.814	0.629	
10	0.1	37	50.3	61	62	56.1	3.88	193	4.38	0.936	0.662	
15	0.1	26.7	45.7	54.6	55.5	41.8	109	5814	6.61	0.973	0.681	
20	0.1	25	51	57	57	41	6689	280048	11.1	1.25	0.793	

The winners: Crouzeix and Ferland (CF) and Crouzeix (C) Open problems: choice of α in (MP1–2), improve (CF) and (C)

References

J. Crouzeix and J. A. Ferland.

Criteria for quasi-convexity and pseudo-convexity: Relationships and comparisons.

Math. Program., 23(1):193-205, 1982.

J.-P. Crouzeix.

Characterizations of Generalized Convexity and Generalized Monotonicity, A Survey.

In J.-P. Crouzeix et al., eds., *Generalized Convexity, Generalized Monotonicity: Recent Results*, pages 237–256. Springer, 1998.

J. A. Ferland.

Mathematical programming problems with quasi-convex objective functions.

Math. Program., 3(1):296-301, 1972.

P. Mereau and J.-G. Paquet.

Second order conditions for pseudo-convex functions. SIAM J. Appl. Math., 27:131–137, 1974.