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Pseudoconvexity

Motivation

Convexity has many nice properties in the context of optimization.
What about its generalizations?

Definition

Let f : Rn → R be twice differentiable and S ⊂ R
n an open convex set.

Then f (x) is pseudoconvex on S if for every x , y ∈ S we have

∇f (x)T (y − x) ≥ 0 ⇒ f (y) ≥ f (x).

Key Properties

Minimizing pseudoconvex objective functions on convex feasible sets,

each stationary point is a global minimum,

each local minimum is a global minimum,

the optimal solution set is convex.
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Illustration
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Illustration
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Illustration
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Pseudoconvexity

Problem Formulation

Given a box x = [x , x ] in R
n and differentiable f : Rn → R.

The question: Is f (x) pseudoconvex on x?

Why testing pseudoconvexity on a box?

In global optimization, feasible sub-domains have often the form of boxes.
Verifying pseudoconvexity can help to process a given box (for example, by
local search).

Theorem (Ahmadi et al., 2013)

Deciding pseudoconvexity is NP-hard on a class of quartic polynomials.
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Pseudoconvexity Characterizations

Theorem (Mereau and Paquet, 1974)

The function f (x) is pseudoconvex on x if there is α ≥ 0 such that

Mα(x) := ∇2f (x) + α∇f (x)∇f (x)T

is positive semidefinite for all x ∈ x .

Denote

D(x) :=

(

0 ∇f (x)T

∇f (x) ∇2f (x)

)

,

and by D(x)r we denote the principal leading submatrix of size r .

Theorem (Ferland, 1972)

The function f (x) is pseudoconvex on x if det(D(x)r ) < 0 for every

r = 2, . . . , n + 1 and for all x ∈ x .
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Pseudoconvexity Characterizations

Theorem (Crouzeix and Ferland, 1982)

The function f (x) is pseudoconvex on x if for each x ∈ x either ∇2f (x) is
positive semidefinite, or ∇2f (x) has one simple negative eigenvalue and

there is b ∈ R
n such that ∇2f (x)b = ∇f (x) and ∇f (x)Tb < 0.

Theorem (Crouzeix, 1998)

The function f (x) is pseudoconvex on x if for each x ∈ x the matrix D(x)
is nonsingular and has exactly one simple negative eigenvalue.

Theorem (Crouzeix, 1998)

The function f (x) is pseudoconvex on x if for each x ∈ x and every y 6= 0
such that ∇f (x)T y = 0 we have yT∇2f (x)y > 0.
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Interval Methods for Testing Pseudoconvexity

Interval Enclosures

Let H ∈ IR
n×n (interval matrix) and g ∈ IR

n (interval vector) such that

∇2f (x) ∈ H ∀x ∈ x ,

∇f (x) ∈ g ∀x ∈ x .

Such interval enclosures of the Hessian matrix and the gradient can be
computed, e.g., by interval arithmetic using automatic differentiation.

If every H ∈ H is positive semidefinite, then f (x) is convex and we
are done. Therefore, we focus on problems such that not every
H ∈ H is positive semidefinite.

We will use the symmetric interval matrix

D :=

(

0 gT

g H

)

.
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Methods Based on Mereau and Paquet

Mereau and Paquet suggest to verify positive semidefiniteness of matrices

Mα(H, g) := H + αggT , H ∈ H , g ∈ g

for a suitable α ≥ 0.

Direct Evaluation (MP1)

By interval arithmetic and for a suitable α ≥ 0 evaluate

M(α) := H + αggT .

Then check whether M(α) is positive semidefinite.

Problems:

Choice of α.

Checking positive semidefiniteness of interval matrices is co-NP-hard.

This approach does not utilize the structure of Mα(x).

Sufficient condition is: λn(M(α)
c
) ≥ ρ(M(α)∆).
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Methods Based on Mereau and Paquet

Theorem

We have that Mα(H, g) is positive semidefinite for all H ∈ H and g ∈ g if

xT (Hc + αg cg
T

c )x − |x |TH∆|x | − 2α|gT

c x |gT

∆ |x | ≥ 0, ∀x ∈ R
n

Theorem

We have that Mα(H, g) is positive semidefinite for all H ∈ H and g ∈ g if

Hc − diag(z)H∆ diag(z) + α(g cg
T

c − gcg
T

∆ diag(z)− diag(z)g∆g
T

c )

is positive semidefinite for every z ∈ {±1}n.

Structure-Oriented Method (MP2)

Based on the above exponential formula.
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Method Based on Ferland

Ferland suggests to check that for each symmetric D ∈ D and for each
r = 2, . . . , n + 1 we have det(Dr ) < 0.

Theorem

It is co-NP-hard to check whether det(D) < 0 for every symmetric D ∈ D.

The Method (F)

Check

det((Dr )c) < 0 and ρ(|(Dr )
−1
c

|(Dr )∆) < 1

for each r = 2, . . . , n + 1.
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Method Based on Crouzeix and Ferland

For H symmetric, the condition that there is b such that Hb = g ,
gTb < 0 is equivalent to

det(D) = det

(

0 gT

g H

)

< 0.

This gives us an equivalent condition:

Theorem

The function f (x) is pseudoconvex on x if for each symmetric D ∈ D we

have det(D) < 0, and each symmetric H ∈ H is nonsingular and has at

most one simple negative eigenvalue.

The Method (CF)

The function f (x) is pseudoconvex on x if

det(Dc) < 0, ρ(|D−1
c |D∆) < 1, and 0 < λn−1(Hc )− ρ(H∆).
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Method Based on Crouzeix

Ferland suggests to check that the nth largest eigenvalue of every
symmetric matrix D ∈ D is positive.

Theorem

Checking that the nth largest eigenvalue of every symmetric matrix D ∈ D

is positive is a co-NP-hard problem even on the class of problems with

g = 0, Hc symmetric positive definite and entrywise nonnegative, and H∆

consisting of ones.

The Method (C)

The function f (x) is pseudoconvex on x if 0 6∈ g and λn(Dc) > ρ(D∆).

14 / 16



Numerical Experiments

Example (Random choices of H and g)

n =dimension, d =radius of H and g ,
H := H − γIn minimally to fail positive semidefiniteness.

success rate (in %) time (in 10−3sec.)
n d MP1 MP2 F CF C MP1 MP2 F CF C

5 1 0 21.2 35.7 40.7 43.5 1.12 9.32 2.14 0.835 0.644
10 1 0 3.2 9.4 11.0 29.3 0.889 49.8 3.71 0.831 0.669
15 1 0 0.3 1.0 1.3 20.3 0.958 427 5.34 0.860 0.694
20 1 0 0 0 0 11.8 1.32 3085 7.43 1.20 0.775
5 0.1 47 52 66.8 67.7 65.4 0.978 6.45 2.24 0.814 0.629
10 0.1 37 50.3 61 62 56.1 3.88 193 4.38 0.936 0.662
15 0.1 26.7 45.7 54.6 55.5 41.8 109 5814 6.61 0.973 0.681
20 0.1 25 51 57 57 41 6689 280048 11.1 1.25 0.793

The winners: Crouzeix and Ferland (CF) and Crouzeix (C)

Open problems: choice of α in (MP1–2), improve (CF) and (C)
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