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Interval-Valued Problems

Sources of Intervals

physical constants

[9.78, 9.82]ms−2 for the gravitational acceleration

mathematical constants

π ∈ [3.1415926535897932384, 3.1415926535897932385].

measurement errors

temperature measured 23◦C± 1◦C

discretization

time is split in days
temperature during the day in [18, 29]◦C for Brno in June

missing data

What was the temperature in Brno on June 9, 1996?
Very probably in [10, 40]◦C.
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Interval Linear Programming

Interval Linear Programming Problem

A family of linear programs

min cT x subject to Ax = b, x ≥ 0,

where c ∈ c = [c , c], b ∈ b = [b, b], and A ∈ A = [A,A].

Related Problems

feasibility, boundedness, etc. for some / all instances,

set of optimal values,

set of optimal solutions.
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Optimal Solution Set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Typical Problem

Find a tight enclosure to S.

Characterization

By duality theory, we have that x ∈ S if and only if there is some y ∈ R
m,

A ∈ A, b ∈ b, and c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c , cT x = bT y ,

where A ∈ A, b ∈ b, c ∈ c.
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Optimal Solution Set – Properties

Example (Garajová, 2016)

The optimal solution set may be disconnected and nonconvex.

Consider the interval LP problem

max x2 subject to [−1, 1]x1 + x2 ≤ 0, x2 ≤ 1.

1

−1

−2

1 2 3 4 5−1−2−3−4−5 0 x1

x2
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Optimal Solution Set – Properties

Theorem (Garajová, H., 2016)

Assume the set of optimal solutions of the dual interval problem

max bT y subject to AT y ≤ c, y ∈ R
m

is bounded. Then the set of optimal solutions S is closed.

Theorem (Garajová, H., 2016)

The set of optimal solutions of the interval linear program (with real A)

min cT x subject to Ax = b, x ≥ 0

is a union of at most 2n convex polyhedra.
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Basis Stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.

(Otherwise each realization has at least one optimal solution in this set.)
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C1

C1 says that AB is regular;

co-NP-hard problem;

Beeck’s sufficient condition: ρ
(

|((Ac)B)
−1|(A∆)B

)

< 1.

8 / 19



Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C2

C2 says that the solution set to ABxB = b lies in R
n
+;

sufficient condition: check of some enclosure to ABxB = b.
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Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C3

C3 says that AT
Ny ≤ cN , AT

B y = cB is strongly feasible;

co-NP-hard problem;

sufficient condition:
(AT

N )y ≤ cN , where y is an enclosure to AT
B y = cB .
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Example

Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

x ≤

(

[15, 16]
[18, 19]
[6, 7]

)

, x ≥ 0.

1

2

3

4

1 2 3 4 50 x1

x2 union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

set of optimal
solutions in dotted
area
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Basis Stability – Interval Right-Hand Side

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0 for each b ∈ b.

C3. cTN − cTB A−1
B

AN ≥ 0T .

Condition C1

C1 and C3 are trivial

C2 is simplified to

A−1
B b ≥ 0,

which is easily verified by interval arithmetic

overall complexity: polynomial
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Basis Stability – Interval Objective Function

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T for each c ∈ c

Condition C1

C1 and C2 are trivial

C3 is simplified to

AT
Ny ≤ cN , AT

B y = cB

or,

(AT
NA

−T
B )cB ≤ cN .

overall complexity: polynomial
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Applications

Real-Life Applications

Transportation problems with uncertain demands, suppliers, and/or
costs.

Networks flows with uncertain capacities.

Diet problems with uncertain amounts of nutrients in foods.

Portfolio selection with uncertain rewards.

Matrix games with uncertain payoffs.

Technical Applications

Tool for global optimization.

Measure of sensitivity of linear programs.
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Applications – Diet Problem

Example (Stigler’s Nutrition Model)

http://www.gams.com/modlib/libhtml/diet.htm.

n = 20 different types of food,

m = 9 nutritional demands,

aij is the the amount of nutrient j contained in one unit of food i ,

bi is the required minimal amount of nutrient j ,

cj is the price per unit of food j ,

minimize the overall cost

The model reads

min cT x subject to Ax ≥ b, x ≥ 0.

The entries aij are not stable!
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Applications – Diet Problem

Example (Stigler’s Nutrition Model (cont.))

Nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c
(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg)

wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106
cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4

peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525

porkroast 4.4 249 .3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209

greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257

limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navybeans 26.9 1691 11.4 792 38.4 24.6 217
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Applications – Diet Problem

Example (Stigler’s Nutrition Model (cont.))

If the entries aij are known with 10% accuracy, then

the problem is not basis stable

the minimal cost ranges in [0.09878, 0.12074],

the interval enclosure of the solution set is

[0, 0.0734], [0, 0.0438], [0, 0.0576], [0, 0.0283], [0, 0.0535], [0, 0.0315], [0, 0.0339],

[0, 0.0300], [0, 0.0246], [0, 0.0337], [0, 0.0358], [0, 0.0387], [0, 0.0396], [0, 0.0429],

[0, 0.0370], [0, 0.0443], [0, 0.0290], [0, 0.0330], [0, 0.0472], [0, 0.1057].

If the entries aij are known with 1% accuracy, then

the problem is basis stable

the minimal cost ranges in [0.10758, 0.10976],

the interval hull of the solution set is

x1 = [0.0282, 0.0309], x8 = [0.0007, 0.0031], x12 = [0.0110, 0.0114],

x15 = [0.0047, 0.0053], x20 = [0.0600, 0.0621].

17 / 19



Conclusion

Open Problems

More about topology of the optimal solution set S
(connectivity, closedness, convexity, etc.),

characterization of S,

tight approximation of S.
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