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Problem Formulation

Convex quadratic programming (CQP)

Consider a CQP problem in a general form

min
(

xT yT
)

(

P R

RT S

)(

x

y

)

+ aTx + cT y

subject to Ax + By = b, Cx + Dy ≤ d , x ≥ 0,

where
(

P R
RT S

)

is positive semidefinite.

Interval CQP

Let input coefficients vary in certain intervals A ∈ [A,A] ≡ A, . . .

Compute f , the smallest optimal value subject to A ∈ A, . . .

Compute f , the largest optimal value subject to A ∈ A, . . .

Theorem

Computation of f and f are NP-hard problems.
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Lower bound f

Theorem

We can reduce computation of f to 2n standard CQP’s, where n is the

number of free variables.

Corollary

1 For the interval CQP

min xTPx + c
T x subject to Ax ≤ b, x ≥ 0,

we have

f = min xTPx + cT x subject to Ax ≤ b, x ≥ 0.

2 For the interval CQP

min xTPx + c
T x subject to Ax = b, x ≥ 0,

we have

f = min xTPx + cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0.
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Upper bound f

Theorem

We can reduce computation of f to 2m+n standard CQP’s, where m is the

number of equations and n is the number of free variables.

Corollary

For the interval CQP

min xTPx + c
T x subject to Ax ≤ b, x ≥ 0,

we have

f = min xTPx + cT x subject to Ax ≤ b, x ≥ 0.

Open problem

Exponentiality w.r.t. n necessary?
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Application: distance of polytopes

Distance of polytopes

Let

columns of C constitute vertices of the first polytope,

columns of −D constitute vertices of the second polytope.

The minimal distance (its square) between them can be solved by CQP

f (C ,D) = min zT z subject to z = Cx + Dy , eT x = eT y = 1, x , y ≥ 0.

Remark

The polytopes are intersecting if and only if f (C ,D) = 0.

Uncertain data

Suppose that C ∈ C and D ∈ D. Compute:

f := min f (C ,D) subject to C ∈ C , D ∈ D,

f := max f (C ,D) subject to C ∈ C , D ∈ D.

5 / 10



Application: distance of polytopes

Minimal separation distance

Reduction to one CQP problem:

f :=min zT z

subject to Cx + Dy ≤ z ≤ Cx + Dy , eT x = eT y = 1, x , y ≥ 0.

Maximal separation distance (exp. w.r.t. dimension, not vertices)

Reduction to 2m CQP problems:

f = max
s∈{±1}m

fs ,

where

fs := min zT z subject to z = C sx + Dsy , eT x = eT y = 1, x , y ≥ 0,

and

C s
ij =

{

C ij if si = 1,

C ij if si = −1,
Ds
ij =

{

D ij if si = 1,

D ij if si = −1.
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Application: distance of polytopes

Example
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Random data in R
2; both polytopes consisting of 30 vertices.
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Application: distance of polytopes

Example
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The convex hull for the midpoint values.

We computed f = 0 and f = 0.6509.
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Conclusion

Interval convex quadratic programming

General form (equations and inequalities, free and nonnegative
variables)

Explicit formulae for the optimal value bounds (easy cases identified).

Approximation of f and f .

Open problem: Does computation of f depend exponentially on the
number of free variables?

Future work

Extension to quadratically constrained problems.
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