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Introduction

Notation

An interval matrix A is defined as

A := [A,A] = {A ∈ R
m×n : A ≤ A ≤ A},

The center and radius of A are respectively defined as

Ac :=
1

2
(A + A), A∆ :=

1

2
(A− A).

The set of all m-by-n interval matrices is denoted by IR
m×n.

The magnitude of an A ∈ IR
m×n is defined as

mag(A) := max(|A|, |A|).

The comparison matrix of A ∈ IR
n×n is the matrix 〈A〉 ∈ R

n×n with
entries

〈A〉ii := min{|a| : a ∈ aii}, i = 1, . . . , n,

〈A〉ij := −mag(aij), i 6= j .
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Interval linear equations

Definition

Let A ∈ IR
n×n, b ∈ IR

n, and consider a set of systems of linear equations

Ax = b, A ∈ A, b ∈ b,

The corresponding solution set is defined as

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

By Σ we denote the interval hull of Σ, i.e., the smallest interval enclosure
of Σ with respect to inclusion.

Problem formulation

The aim is to compute Σ or an as tight as possible enclosure of Σ by an
interval vector x ∈ IR

n, meaning that Σ ⊆ x.
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Assumption

Assumption

Assume that Ac = In.

Easily satisfied by preconditioning A = b by A
−1
c .

Rigorously precondition as

A′x = b′, A′ ∈ [In −mag(In − RA), In +mag(In − RA)], b′ ∈ Rb.

where R ≈ A
−1
c .

Consequences

Σ is bounded (i.e., A contains no singular matrix) if and only if the
spectral radius ρ(A∆) < 1,

Σ can be determined in polynomial time.
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Interval hull computation

Two (equivalent) formulas for computing the interval hull Σ:

Hansen–Bliek–Rohn method (1993),

Ning–Kearfott formula (1997).

Denote:

u := 〈A〉−1 mag(b),

di := (〈A〉−1)ii , i = 1, . . . , n,

αi := 〈aii〉 − 1/di , i = 1, . . . , n.

Theorem (Ning–Kearfott, 1997)

Σi =
bi + (ui/di −mag(bi ))[−1, 1]

aii + αi [−1, 1]
, i = 1, . . . , n.

Disadvantage

We have to safely compute the inverse of 〈A〉.
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Interval operators

Iteration methods can usually be expressed by an operator P : IRn 7→ IR
n

(x ∩Σ) ⊆ P(x).

Basically, iterations then can have the plain form x 7→ P(x), or the form
with intersections x 7→ P(x) ∩ x.

Known operators

The Krawczyk operator

x 7→ b+ (In − A)x.

Denote by D the interval diagonal matrix, whose diagonal is the same
as that of A, and A

′ is used for the interval matrix A with zero
diagonal. The interval Jacobi operator reads

x 7→ D
−1(b− A

′
x).

The interval Gauss–Seidel operator is similar to Jacobi, but evaluated
successively.
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Limiting enclosures

By xGS and xK we denote the limit enclosures computed by the interval
Gauss–Seidel and Krawczyk methods, respectively.

Theorem

Recall

u := 〈A〉−1mag(b).

We have

x
GS = D

−1(b+mag(A′)u[−1, 1]),

x
K = b+ A∆u[−1, 1].

Moreover,

u = mag(Σ) = mag(xGS) = mag(xK).

Corollary

We have Σ ∈ [−u, u].
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Limiting enclosures

Example (Typical case)

The solution set, the preconditioned solution set and its enclosure.

−1

−2

1−1−2−3−4 0
x1

x2

8 / 15



New interval operator1

Theorem (Hlad́ık, 2014)

Let Σ ⊆ x ∈ IR
n. Then

Σi ⊆
bi −

∑
j 6=i aijxj + [γi ,−γi ]ui

aii + γi [−1, 1]

for every γi ∈ [0, αi ], and i = 1, . . . , n, where

di := (〈A〉−1)ii , i = 1, . . . , n,

αi := 〈aii〉 − 1/di , i = 1, . . . , n.

Remarks

Generalization of the interval Gauss–Seidel operator (let γ := 0).

Its performance depends on computation of u and d .
Tight lower bounds are sufficient.

1M. Hlad́ık. New operator and method for solving real preconditioned
interval linear equations. SIAM J. Numer. Anal., 52(1):194–206, 2014.
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New interval operator

Theorem

We have

u ≥ mag (b) + A∆(mag (b) + A∆mag (b))),

di ≥ d i := aii/(1− ((A∆)
2)ii ), i = 1, . . . , n.

Remarks

Both bounds computable in time O(n2).

For γi > 0, it outperforms the interval Gauss–Seidel operator if x is
sufficiently tight.

Efficient implementation of the new operator

Call one iteration of the operator on the initial box [−u, u].
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New enclosing method

Algorithm (Magnitude method)

1 Compute u, an enclosure to the solution of 〈A〉u = mag(b).

2 Calculate d , a lower bound on d (e.g., by the above theorem).

3 Evaluate

x
∗
i :=

bi + (
∑

j 6=i aij∆uj − γiui)[−1, 1]

aii + γi [−1, 1]
, i = 1, . . . , n,

where γi := 〈aii 〉 − 1/d i .

Theorem

If u and d are calculated exactly, then x∗ = Σ.

Theorem

We have x∗ ⊆ xGS. If γ = 0, then equality holds.
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Numerical experiments

Example

Randomly generated examples for various dimensions and interval
radii.

The entries of Ac and bc were generated randomly in [−10, 10] with
uniform distribution.

All radii of A and b were equal to the parameter δ > 0.

The computations were carried out in MATLAB with Intlab.

Tightness of the computed enclosure x was measured by
∑n

i=1 xi∆∑n
i=1Σi∆

.

(Thus, the closer to 1, the sharper enclosure.)
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Numerical experiments

Example (Tightness of enclosures for randomly generated data)

n δ verifylss Gauss-Seidel magnitude magnitude (γ = 0)

5 1 1.1520 1.1510 1.09548 1.1196
5 0.1 1.08302 1.01645 1.00591 1.0164
5 0.01 1.01755 1.00148 1.00037 1.00148

10 0.1 1.07756 1.02495 1.01107 1.02474
10 0.01 1.02362 1.00378 1.00132 1.00378
15 0.1 1.06994 1.03121 1.01755 1.03074
15 0.01 1.02125 1.00217 1.00047 1.00216
20 0.1 1.05524 1.03076 1.02007 1.02989
20 0.01 1.02643 1.00348 1.00097 1.00348
30 0.01 1.02539 1.00402 1.00129 1.00401
30 0.001 1.00574 1.00026 1.000039 1.000256
50 0.01 1.02688 1.00533 1.00226 1.00531
50 0.001 1.00902 1.00051 1.00011 1.00051
100 0.001 1.01303 1.00057 1.00013 1.00057
100 0.0001 1.0024988 1.0000274 1.0000022 1.0000274
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Numerical experiments

Example (Computational time in sec. for randomly generated data)

n δ verifylss Gauss-Seidel magnitude magnitude (γ = 0)

5 1 3.2903 0.10987 0.004466 0.003429

5 0.1 0.004234 0.02937 0.004513 0.003502

5 0.01 0.002342 0.02500 0.004473 0.003456
10 0.1 0.018845 0.08370 0.004877 0.003777

10 0.01 0.003161 0.05305 0.004821 0.003799
15 0.1 0.246779 0.21868 0.005212 0.004162

15 0.01 0.005403 0.09163 0.005260 0.004172

20 0.1 16.9678 0.95238 0.005554 0.004251

20 0.01 0.008950 0.15602 0.005736 0.004622

30 0.01 0.019111 0.32294 0.006457 0.005289

30 0.001 0.004488 0.19544 0.006460 0.005260
50 0.01 0.210430 1.01155 0.008483 0.007062

50 0.001 0.010190 0.54813 0.008343 0.006879

100 0.001 0.044463 2.42025 0.016706 0.014645

100 0.0001 0.013940 1.48693 0.017089 0.014847
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Conclusion

Performance

The magnitude method overcomes the Gauss–Seidel iteration method
with respect to both computational time and sharpness of enclosures.

Compared to the Intlab function verifylss, the magnitude
method produces always tighter enclosures. Unless the input interval
data are very narrow, it also overcomes verifylss with respect to
computational time.

Open problems

Extension our approach to parametric interval systems,

Overcoming the assumption Ac = In.
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