Yet another method for solving interval linear equations

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

> SWIM 2015 Prague June 9–11, 2015

Introduction

Notation

• An interval matrix A is defined as

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} : \underline{A} \le A \le \overline{A} \},\$$

• The center and radius of A are respectively defined as

$$\mathbf{A}_c := rac{1}{2}(\underline{A} + \overline{A}), \quad \mathbf{A}_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

- The set of all *m*-by-*n* interval matrices is denoted by $\mathbb{IR}^{m \times n}$.
- The magnitude of an $\mathbf{A} \in \mathbb{IR}^{m imes n}$ is defined as

$$mag(\mathbf{A}) := max(|\underline{A}|, |\overline{A}|).$$

• The comparison matrix of $\mathbf{A} \in \mathbb{IR}^{n \times n}$ is the matrix $\langle \mathbf{A} \rangle \in \mathbb{R}^{n \times n}$ with entries

Definition

Let $\mathbf{A} \in \mathbb{IR}^{n \times n}$, $\mathbf{b} \in \mathbb{IR}^n$, and consider a set of systems of linear equations

$$Ax = b, \quad A \in \mathbf{A}, \ b \in \mathbf{b},$$

The corresponding solution set is defined as

$$\Sigma := \{ x \in \mathbb{R}^n : \exists A \in \mathbf{A} \exists b \in \mathbf{b} : Ax = b \}.$$

By Σ we denote the interval hull of Σ , i.e., the smallest interval enclosure of Σ with respect to inclusion.

Problem formulation

The aim is to compute Σ or an as tight as possible enclosure of Σ by an interval vector $\mathbf{x} \in \mathbb{IR}^n$, meaning that $\Sigma \subseteq \mathbf{x}$.

Assumption

Assumption

Assume that $\mathbf{A}_c = I_n$.

- Easily satisfied by preconditioning $\mathbf{A} = \mathbf{b}$ by \mathbf{A}_c^{-1} .
- Rigorously precondition as

$$A'x = b', \quad A' \in [I_n - \max(I_n - R\mathbf{A}), I_n + \max(I_n - R\mathbf{A})], \ b' \in R\mathbf{b}.$$

where $R \approx \mathbf{A}_c^{-1}$.

Consequences

- Σ is bounded (i.e., **A** contains no singular matrix) if and only if the spectral radius $\rho(\mathbf{A}_{\Delta}) < 1$,
- Σ can be determined in polynomial time.

Interval hull computation

Two (equivalent) formulas for computing the interval hull Σ :

- Hansen-Bliek-Rohn method (1993),
- Ning–Kearfott formula (1997).

Denote:

$$\begin{split} u &:= \langle \mathbf{A} \rangle^{-1} \operatorname{mag}(\mathbf{b}), \\ d_i &:= (\langle \mathbf{A} \rangle^{-1})_{ii}, \quad i = 1, \dots, n, \\ \alpha_i &:= \langle \mathbf{a}_{ii} \rangle - 1/d_i, \quad i = 1, \dots, n. \end{split}$$

Theorem (Ning–Kearfott, 1997)

$$\boldsymbol{\Sigma}_i = \frac{\mathbf{b}_i + (u_i/d_i - \max(\mathbf{b}_i))[-1,1]}{\mathbf{a}_{ii} + \alpha_i[-1,1]}, \quad i = 1, \dots, n.$$

Disadvantage

• We have to safely compute the inverse of $\langle \mathbf{A} \rangle$.

Interval operators

Iteration methods can usually be expressed by an operator $\mathcal{P}:\mathbb{IR}^n\mapsto\mathbb{IR}^n$ $(\textbf{x}\cap\Sigma)\subseteq\mathcal{P}(\textbf{x}).$

Basically, iterations then can have the plain form $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x})$, or the form with intersections $\mathbf{x} \mapsto \mathcal{P}(\mathbf{x}) \cap \mathbf{x}$.

Known operators

The Krawczyk operator

$$\mathbf{x} \mapsto \mathbf{b} + (I_n - \mathbf{A})\mathbf{x}.$$

 Denote by D the interval diagonal matrix, whose diagonal is the same as that of A, and A' is used for the interval matrix A with zero diagonal. The interval Jacobi operator reads

$$\mathbf{x} \mapsto \mathbf{D}^{-1}(\mathbf{b} - \mathbf{A}'\mathbf{x}).$$

 The interval Gauss–Seidel operator is similar to Jacobi, but evaluated successively.

Limiting enclosures

By \mathbf{x}^{GS} and \mathbf{x}^{K} we denote the limit enclosures computed by the interval Gauss–Seidel and Krawczyk methods, respectively.

Theorem

Recall

$$u := \langle \mathbf{A} \rangle^{-1} \operatorname{mag}(\mathbf{b}).$$

We have

$$\begin{split} \mathbf{x}^{\mathsf{GS}} &= \mathbf{D}^{-1}(\mathbf{b} + \max(\mathbf{A}')u[-1,1]), \\ \mathbf{x}^{\mathsf{K}} &= \mathbf{b} + \mathbf{A}_{\Delta}u[-1,1]. \end{split}$$

Moreover,

$$u = \max(\mathbf{\Sigma}) = \max(\mathbf{x}^{\mathsf{GS}}) = \max(\mathbf{x}^{\mathsf{K}}).$$

Corollary

We have $\Sigma \in [-u, u]$.

Limiting enclosures

Example (Typical case)

The solution set, the preconditioned solution set and its enclosure.

New interval operator¹

Theorem (Hladík, 2014)

Let $\Sigma \subseteq \mathbf{x} \in \mathbb{IR}^n$. Then

$$\mathbf{\Sigma}_i \subseteq rac{\mathbf{b}_i - \sum_{j
eq i} \mathbf{a}_{ij} \mathbf{x}_j + [\gamma_i, -\gamma_i] u_i}{\mathbf{a}_{ii} + \gamma_i [-1, 1]}$$

for every $\gamma_i \in [0, \alpha_i]$, and $i = 1, \ldots, n$, where

$$egin{aligned} &d_i := (\langle \mathbf{A}
angle^{-1})_{ii}, \quad i=1,\ldots,n, \ &lpha_i := \langle \mathbf{a}_{ii}
angle - 1/d_i, \quad i=1,\ldots,n \end{aligned}$$

Remarks

- Generalization of the interval Gauss–Seidel operator (let $\gamma := 0$).
- Its performance depends on computation of u and d. Tight lower bounds are sufficient.

¹M. Hladík. New operator and method for solving real preconditioned interval linear equations. SIAM J. Numer. Anal., 52(1):194–206, 2014.

Theorem

We have

$$\begin{split} u &\geq \max(\mathbf{b}) + \mathbf{A}_{\Delta}(\max(\mathbf{b}) + \mathbf{A}_{\Delta}\max(\mathbf{b}))), \\ d_i &\geq \underline{d}_i := \overline{a}_{ii} / (1 - ((\mathbf{A}_{\Delta})^2)_{ii}), \quad i = 1, \dots, n. \end{split}$$

Remarks

- Both bounds computable in time $\mathcal{O}(n^2)$.
- For γ_i > 0, it outperforms the interval Gauss–Seidel operator if x is sufficiently tight.

Efficient implementation of the new operator

Call one iteration of the operator on the initial box [-u, u].

Algorithm (Magnitude method)

- **(**) Compute **u**, an enclosure to the solution of $\langle \mathbf{A} \rangle u = \max(\mathbf{b})$.
- **②** Calculate \underline{d} , a lower bound on d (e.g., by the above theorem).
- Second Evaluate

$$\mathbf{x}_i^* := \frac{\mathbf{b}_i + (\sum_{j \neq i} \mathbf{a}_{ij\Delta} \overline{u}_j - \gamma_i \underline{u}_i)[-1, 1]}{\mathbf{a}_{ii} + \gamma_i [-1, 1]}, \quad i = 1, \dots, n,$$

where $\gamma_i := \langle \mathbf{a}_{ii} \rangle - 1/\underline{d}_i$.

Theorem

If u and d are calculated exactly, then $\mathbf{x}^* = \mathbf{\Sigma}$.

Theorem

We have $\mathbf{x}^* \subseteq \mathbf{x}^{GS}$. If $\gamma = 0$, then equality holds.

Example

- Randomly generated examples for various dimensions and interval radii.
- The entries of \mathbf{A}_c and \mathbf{b}_c were generated randomly in [-10, 10] with uniform distribution.
- All radii of **A** and **b** were equal to the parameter $\delta > 0$.
- The computations were carried out in MATLAB with INTLAB.
- $\bullet\,$ Tightness of the computed enclosure x was measured by

$$\frac{\sum_{i=1}^{n} \mathbf{x}_{i\Delta}}{\sum_{i=1}^{n} \mathbf{\Sigma}_{i\Delta}}.$$

(Thus, the closer to 1, the sharper enclosure.)

Numerical experiments

Example (Tightness of enclosures for randomly generated data)

n	δ	verifylss	Gauss-Seidel	magnitude	magnitude ($\gamma=0$)
5	1	1.1520	1.1510	1.09548	1.1196
5	0.1	1.08302	1.01645	1.00591	1.0164
5	0.01	1.01755	1.00148	1.00037	1.00148
10	0.1	1.07756	1.02495	1.01107	1.02474
10	0.01	1.02362	1.00378	1.00132	1.00378
15	0.1	1.06994	1.03121	1.01755	1.03074
15	0.01	1.02125	1.00217	1.00047	1.00216
20	0.1	1.05524	1.03076	1.02007	1.02989
20	0.01	1.02643	1.00348	1.00097	1.00348
30	0.01	1.02539	1.00402	1.00129	1.00401
30	0.001	1.00574	1.00026	1.000039	1.000256
50	0.01	1.02688	1.00533	1.00226	1.00531
50	0.001	1.00902	1.00051	1.00011	1.00051
100	0.001	1.01303	1.00057	1.00013	1.00057
100	0.0001	1.0024988	1.0000274	1.0000022	1.0000274

Numerical experiments

Example (Computational time in sec. for randomly generated data)

n	δ	verifylss	Gauss-Seidel	magnitude	magnitude ($\gamma=0$)
5	1	3.2903	0.10987	0.004466	0.003429
5	0.1	0.004234	0.02937	0.004513	0.003502
5	0.01	0.002342	0.02500	0.004473	0.003456
10	0.1	0.018845	0.08370	0.004877	0.003777
10	0.01	0.003161	0.05305	0.004821	0.003799
15	0.1	0.246779	0.21868	0.005212	0.004162
15	0.01	0.005403	0.09163	0.005260	0.004172
20	0.1	16.9678	0.95238	0.005554	0.004251
20	0.01	0.008950	0.15602	0.005736	0.004622
30	0.01	0.019111	0.32294	0.006457	0.005289
30	0.001	0.004488	0.19544	0.006460	0.005260
50	0.01	0.210430	1.01155	0.008483	0.007062
50	0.001	0.010190	0.54813	0.008343	0.006879
100	0.001	0.044463	2.42025	0.016706	0.014645
100	0.0001	0.013940	1.48693	0.017089	0.014847

Conclusion

Performance

- The magnitude method overcomes the Gauss-Seidel iteration method with respect to both computational time and sharpness of enclosures.
- Compared to the INTLAB function verifylss, the magnitude method produces always tighter enclosures. Unless the input interval data are very narrow, it also overcomes verifylss with respect to computational time.

Open problems

- Extension our approach to parametric interval systems,
- Overcoming the assumption $\mathbf{A}_c = I_n$.