# Interval Convex Quadratic Programming Problems in a General Form

#### Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

The 13th International Symposium on Operations Research SOR 2015, Bled, Slovenia September 23–25, 2015

## **Problem Formulation**

## Convex quadratic programming (CQP)

Consider a CQP problem in a general form

min 
$$\begin{pmatrix} x^T \ y^T \end{pmatrix} \begin{pmatrix} P & R \\ R^T & S \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + a^T x + c^T y$$
  
subject to  $Ax + By = b$ ,  $Cx + Dy \le d$ ,  $x \ge 0$ ,

where  $\begin{pmatrix} P & R \\ R^T & S \end{pmatrix}$  is positive semidefinite.

#### Interval CQP

Let input coefficients vary in certain intervals  $A \in [\underline{A}, \overline{A}] \equiv \mathbf{A}, \ldots$ 

- Compute  $\underline{f}$ , the smallest optimal value subject to  $A \in \mathbf{A}$ , ...
- Compute  $\overline{f}$ , the largest optimal value subject to  $A \in \mathbf{A}, \ldots$

#### **Theorem**

Computation of  $\underline{f}$  and  $\overline{f}$  are NP-hard problems.

# Lower bound $\underline{f}$

#### **Theorem**

We can reduce computation of  $\underline{f}$  to  $2^n$  standard CQP's, where n is the number of free variables.

## Corollary

For the interval CQP

min 
$$x^T \mathbf{P} x + \mathbf{c}^T x$$
 subject to  $\mathbf{A} x \leq \mathbf{b}$ ,  $x \geq 0$ ,

we have

$$\underline{f} = \min \ x^T \underline{P} x + \underline{c}^T x \ \text{ subject to } \underline{A} x \leq \overline{b}, \ x \geq 0.$$

For the interval CQP

min 
$$x^T \mathbf{P} x + \mathbf{c}^T x$$
 subject to  $\mathbf{A} x = \mathbf{b}, x \ge 0$ ,

we have

$$\underline{f} = \min \ x^T \underline{P}x + \underline{c}^T x \ \text{ subject to } \underline{A}x \leq \overline{b}, \ \overline{A}x \geq \underline{b}, \ x \geq 0.$$

# Upper bound $\overline{f}$

#### **Theorem**

We can reduce computation of  $\overline{f}$  to  $2^{m+n}$  standard CQP's, where m is the number of equations and n is the number of free variables.

## Corollary

For the interval CQP

min 
$$x^T \mathbf{P} x + \mathbf{c}^T x$$
 subject to  $\mathbf{A} x \leq \mathbf{b}$ ,  $x \geq 0$ ,

we have

$$\overline{f} = \min \ x^T \overline{P} x + \overline{c}^T x \ \text{subject to} \ \overline{A} x \leq \underline{b}, \ x \geq 0.$$

## Open problem

Exponentiality w.r.t. n necessary?

## Distance of polytopes

Let

- columns of C constitute vertices of the first polytope,
- ullet columns of -D constitute vertices of the second polytope.

The minimal distance (its square) between them can be solved by CQP

$$f(C,D) = \min z^T z$$
 subject to  $z = Cx + Dy$ ,  $e^T x = e^T y = 1$ ,  $x, y \ge 0$ .

#### Remark

The polytopes are intersecting if and only if f(C, D) = 0.

#### Uncertain data

Suppose that  $C \in \mathbf{C}$  and  $D \in \mathbf{D}$ . Compute:

 $\underline{f} := \min f(C, D)$  subject to  $C \in \mathbf{C}, D \in \mathbf{D},$ 

 $\overline{f} := \max f(C, D)$  subject to  $C \in \mathbf{C}$ ,  $D \in \mathbf{D}$ .

#### Minimal separation distance

Reduction to one CQP problem:

$$\underline{f} := \min \ z^T z$$

subject to 
$$\underline{C}x + \underline{D}y \le z \le \overline{C}x + \overline{D}y$$
,  $e^Tx = e^Ty = 1$ ,  $x, y \ge 0$ .

#### Maximal separation distance (exp. w.r.t. dimension, not vertices)

Reduction to  $2^m$  CQP problems:

$$\overline{f} = \max_{s \in \{\pm 1\}^m} f_s,$$

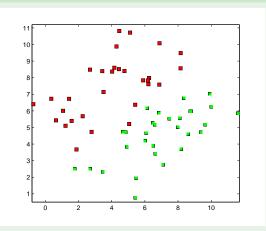
where

$$f_s := \min \ z^T z$$
 subject to  $z = C^s x + D^s y$ ,  $e^T x = e^T y = 1$ ,  $x, y \ge 0$ ,

and

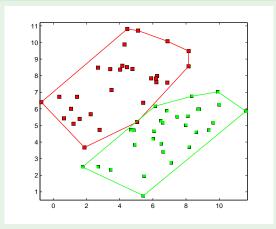
$$C_{ij}^s = egin{cases} rac{C_{ij}}{\overline{C}_{ij}} & ext{if } s_i = 1, \ \overline{C}_{ij} & ext{if } s_i = -1, \end{cases}$$
  $D_{ij}^s = egin{cases} rac{D_{ij}}{\overline{D}_{ij}} & ext{if } s_i = 1, \ \overline{D}_{ij} & ext{if } s_i = -1. \end{cases}$ 





ullet Random data in  $\mathbb{R}^2$ ; both polytopes consisting of 30 vertices.

## Example



- The convex hull for the midpoint values.
- We computed  $\underline{f} = 0$  and  $\overline{f} = 0.6509$ .

## Conclusion

#### Interval convex quadratic programming

- General form (equations and inequalities, free and nonnegative variables)
- Explicit formulae for the optimal value bounds (easy cases identified).
- Approximation of  $\underline{f}$  and  $\overline{f}$ .
- Open problem: Does computation of  $\overline{f}$  depend exponentially on the number of free variables?

#### Future work

• Extension to quadratically constrained problems.

#### References

M. Hladík.

Optimal value bounds in nonlinear programming with interval data. *TOP*, 19(1):93–106, 2011.

M. Hladík.

Interval linear programming: A survey.

In Z. A. Mann, editor, *Linear Programming - New Frontiers in Theory and Applications*, chapter 2, pages 85–120. Nova Science Publishers, New York, 2012.

闻 W. Li, M. Xia, and H. Li.

New method for computing the upper bound of optimal value in interval quadratic program.

J. Comput. Appl. Math., 288(0):70-80, 2015.