On relation between P-matrices and regularity of interval matrices

Milan Hladík

Department of Applied Mathematics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic http://kam.mff.cuni.cz/~hladik/

> MatTriad 2015 Coimbra, Portugal September 7–11, 2015

P-matrix

Definition

 $A \in \mathbb{R}^{n \times n}$ is a P-matrix if all its principal minors are positive.

Key application

A linear complementarity problem

$$q + Mx \ge 0, \ x \ge 0, \ (q + Mx)^T x = 0.$$

has a unique solution for each q if and only if M is a P-matrix.

Theorem (Fiedler & Pták, 1962)

A matrix $A \in \mathbb{R}^{n \times n}$ is a P-matrix if and only if for each vector $x \neq 0$ there is i such that $x_i(Ax)_i > 0$.

P-matrix

Definition

 $A \in \mathbb{R}^{n \times n}$ is a P-matrix if all its principal minors are positive.

Complexity

Checking P-matrix property is co-NP-hard (Coxson, 1994).

Sub-classes

Special (easily identifiable) sub-classes of P-matrices (Peña, 2001, Tsatsomeros, 2004):

- positive definite matrices
- M-matrices ($a_{ij} \leq 0 \ \forall i, j \text{ and } A^{-1} \geq 0$),
- B-matrices $\left(\sum_{k=1}^{n} a_{ik} > 0 \text{ and } \frac{1}{n} \sum_{k=1}^{n} a_{ik} > a_{ij} \text{ for } j \neq i\right)$,
- H-matrices with positive diagonal entries (A is an H-matrix if $\langle A \rangle$ is an M-matrix, where $\langle A \rangle_{ii} = |a_{ii}|$ and $\langle A \rangle_{ij} = -|a_{ij}|, i \neq j$).

Interval matrix

Notation

• An interval matrix A is defined as

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} : \underline{A} \le A \le \overline{A} \},\$$

• The center and radius of A are respectively defined as

$$\mathbf{A}_c := rac{1}{2}(\underline{A} + \overline{A}), \quad \mathbf{A}_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

• The set of all *m*-by-*n* interval matrices is denoted by $\mathbb{IR}^{m \times n}$.

Definition

 $A \in \mathbb{IR}^{n \times n}$ is regular if every $A \in \mathbf{A}$ is nonsingular.

Properties

- Checking regularity is co-NP-hard (Poljak & Rohn, 1988).
- Forty equivalent characterizations (Rohn, 2009).

Theorem (Rohn, 1989)

Let $\mathbf{A} \in \mathbb{IR}^{n \times n}$ be regular. Then $A_1^{-1}A_2$ is a P-matrix for each $A_1, A_2 \in \mathbf{A}$.

Theorem (Rohn, 1989)

An interval matrix $\mathbf{A} \in \mathbb{IR}^{n \times n}$ is regular if and only if for each $y \in \{\pm 1\}^n$ the matrix $A_c - D_y A_\Delta$ is nonsingular and $(A_c - D_y A_\Delta)^{-1}(A_c + D_y A_\Delta)$ is a *P*-matrix.

Theorem (Rump, 2003)

Let $A \in \mathbb{IR}^{n \times n}$ with A - I and A + I nonsingular. Then A is a P-matrix if and only if $[(A - I)^{-1}(A + I) - I, (A - I)^{-1}(A + I) + I]$ is regular.

Theorem

Let $A \in \mathbb{R}^{n \times n}$. If $\alpha > 0$ is sufficiently small, then $P := \alpha A$ is a P-matrix if and only if $[(I - P)^{-1} - I, (I - P)^{-1} + I]$ is regular.

Open problem

Tight estimation of α .

Theorem

Let $\mathbf{A} \in \mathbb{IR}^{n \times n}$ with A_c nonsingular. Then \mathbf{A} is regular if and only if $I - A_c^{-1}D_y A_\Delta D_z$ is a P-matrix for each $y, z \in \{\pm 1\}^n$.

Sufficient conditions for P-matrices

Theorem

 $A \in \mathbb{R}^{n \times n}$ is a P-matrix if A - I and A + I are nonsingular and $\rho(|(A + I)^{-1}(A - I)|) < 1$.

Proof.

Rump's theorem and sufficient condition for regularity of $[(A - I)^{-1}(A + I) - I, (A - I)^{-1}(A + I) + I].$

Theorem

The matrix $A \in \mathbb{R}^{n \times n}$ is a P-matrix provided for $I - \alpha A$ is nonsingular and $\rho(|I - \alpha A|) < 1$ for some $\alpha > 0$.

Remark

Weaker than checking H-matrix property.

Interval P-matrices

Definition

An interval matrix $A \in \mathbb{IR}^{n \times n}$ is called *an interval P-matrix* if each $A \in \mathbf{A}$ is a P-matrix.

Theorem (Białas and Garloff, 1984)

 $\mathbf{A} \in \mathbb{IR}^{n \times n}$ is an interval P-matrix if and only if $A_c - D_z A_\Delta D_z$ is a P-matrix for each $z \in \{\pm 1\}^n$.

Corollary

Let $\mathbf{A} \in \mathbb{IR}^{n \times n}$ such that $A_c = I_n$. Then \mathbf{A} is an interval P-matrix if and only if <u>A</u> is a P-matrix.

Open problem

How to employ for checking interval P-property?

References

J. M. Peña.

A class of P-matrices with applications to the localization of the eigenvalues of a real matrix.

SIAM J. Matrix Anal. Appl., 22(4):1027–1037, 2001.

J. Rohn.

Forty necessary and sufficient conditions for regularity of interval matrices: A survey.

Electron. J. Linear Algebra, 18:500–512, 2009.

S. M. Rump.

On P-matrices. Linear Algebra Appl., 363:237–250, 2003.

M. J. Tsatsomeros.

Generating and detecting matrices with positive principal minors. In L. Li, editor, *Focus on Computational Neurobiology*, pages 115–132. Nova Science Publishers, Commack, NY, USA, 2004.