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Part I. Computational complexity: A pair of examples
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Introduction: Computational complexity

The main role of computational complexity. Consider the following
computational problem: given a function f and data x , compute f (x).
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M. Černý & M. Hlad́ık (Prague, CZ) Complexity & Statitics 3 / 22



Introduction: Computational complexity

The main role of computational complexity. Consider the following
computational problem: given a function f and data x , compute f (x).

Can f (x) be computed efficiently (= in polynomial time)?

Is computation of f (x) NP-hard? (Informally: only exponential-time

algorithms exist?)
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Can f (x) be computed efficiently (= in polynomial time)?

Is computation of f (x) NP-hard? (Informally: only exponential-time

algorithms exist?)

Is f (x) computable (recursive) at all?

If computation of f (x) is hard, can we compute at least an
approximation of f (x) efficiently? Or is f (x) efficiently
inapproximable?

Can the computation of f (x) be efficiently parallelized? Or is it
intrinsically sequential?

Many further and finer questions (weak/strong polynomiality,
pseudopolynomiality, randomized computing, reductions among
problems, polynomial-time hierarchy, space (memory) complexity . . . )
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Examples

Complexity theory goes across many areas of mathematics:

Number theory. Given a, b, c ∈ N, finding a solution x , y ∈ N of the
equation ax2 + by = c has a solution is NP-hard.
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Examples

Complexity theory goes across many areas of mathematics:

Number theory. Given a, b, c ∈ N, finding a solution x , y ∈ N of the
equation ax2 + by = c has a solution is NP-hard.

Graph theory. Traveling salesman is NP-hard.

Calculus. Given a function f : R → R composed of +,−,×,÷, sin,
determining whether it has a root is undecidable.

Optimization. Continuous linear programming is “easy”, while
integer linear programming is “hard”.

Set theory. It is undecidable whether a statement is provable in
Zermelo-Fraenkel set theory.

And statistics ??
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An example of our previous work: c-optimal design

Formulation. Consider the linear regression model y = Xβ + ε, where εi
are N(0, σ2) independent. We are given a finite experimental domain Ξ
and c 6= 0. Two natural problems:
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ApproxDesign: Find the approximately c-optimal design over Ξ.

Find the probabilistic measure ξ on Ξ minimizing var(cT β̂), where β̂ is
the OLS-estimator.
Example: if ξ = (0.2, 0.5, 0, 0.3)T, then it is optimal to make 20%
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ExactDesign: Given n, find the n-exact c-optimal design over Ξ.

Given n (the number of observations), find the probabilistic measure ξ

on Ξ minimizing var(cT β̂) s.t. nξ is an integer vector.
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ExactDesign: Given n, find the n-exact c-optimal design over Ξ.

Given n (the number of observations), find the probabilistic measure ξ

on Ξ minimizing var(cT β̂) s.t. nξ is an integer vector.

Are these problems computational easy or hard?
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c-optimal design (contd.)

Some results (Černý & Hlad́ık, Comput Optim Appl, 2012):

ExactDesign is NP-hard.

ApproxDesign is computable in polynomial time, but it is P-complete
— the “hardest” among all efficiently computable problems.

ApproxDesign cannot be efficiently parallelized.

ApproxDesign is equivalent to general linear programming.

The message: Do not try to design “good” algorithms for the problem.
If you try to, then you will be competing against interior point
algorithms and it is not easy to defeat them. But if you succeed, you’ll
be truly famous in optimization.
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Part II. Computational complexity and analysis of one-dimensional

interval data
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One-dimensional interval data: a model

Assumptions.

Let x1, . . . , xn be a dataset; for example, let the data be a random
sample from a distribution Φ. The dataset is unobservable.
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Assumptions.

Let x1, . . . , xn be a dataset; for example, let the data be a random
sample from a distribution Φ. The dataset is unobservable.
What is observable is a collection of intervals x1 = [x1, x1], . . . ,
xn = [xn, xn] such that

x1 ∈ x1, . . . , xn ∈ xn a.s.

A general goal: We want to make inference about the original
dataset x = (x1, . . . , xn), about the generating distribution Φ, about
its parameters, we want to test hypotheses etc.
We are given a statistic S(x1, . . . , xn) and we want to
determine/estimate its value, distribution, or other properties, using
only the observable intervals x = (x1, . . . , xn).
Now: the appropriate toolbox depends on whether we can make
further assumptions on the distribution of (x , x).

For example, in which practical situations can we assume that x is
uniformly distributed on x and when we cannot?
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The possibilistic approach

In this lecture: our only knowledge about (x , x) is x ∈ x a.s. Nothing

more.
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The possibilistic approach

In this lecture: our only knowledge about (x , x) is x ∈ x a.s. Nothing

more.

Then, given a statistic S , the only information we can infer about S
from the observable intervals x is the pair of tight bounds

S = max{S(ξ) : ξ ∈ x},

S = min{S(ξ) : ξ ∈ x},

clearly satisfying
S 6 S(x) 6 S a.s.

Remark. In econometrics, partial knowledge about the distribution
(x , x) is referred to as partial identification: see the survey paper
E. Tamer, Partial identification in econometrics, Annual Review of
Economics 2 (2010), pp. 167–195.

Also many papers in Econometrica and other journals.
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The core problem

The core problem is:

Given a statistic S(x1, . . . , xn) and the intervals x = (x1, . . . , xn), is it
computationally easy or difficult to determine

S = max{S(ξ) : ξ ∈ x} and S = min{S(ξ) : ξ ∈ x} ?
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Example: Test statistics

We are to test a null hypothesis (H0) against an alternative A using a
test statistic S

Let D be the distribution of S under H0

Given the intervals x1, . . . , xn: if we can compute S ,S , then we can
make at least partial conclusions:

D

95%

2.5%2.5%

S S

D

95%

2.5%2.5%

S S

D

95%

2.5%2.5%

S S

DO NOT REJECT REJECT ???
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Sample variance & complexity

s2 = max





1

n − 1

n∑
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
xi −

1

n
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xj




2

: x ∈ x



 ,
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


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n− 1
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
xi −

1
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
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

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Observation: s2 → CQP → weakly polynomial time

Ferson et al.: a strongly polynomial algorithm O(n2)

Unfortunately: s2 is NP-hard

Even worse: s2 is NP-hard to approximate with an arbitrary
absolute error

The message: if somebody claims that (s)he can design an efficient
algorithm for computing s2 with an error at most ±1000, then (s)he
has proved P = NP and will get the $1M award from the Clay Math
Institute. . .
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Sample variance & complexity

Well. . . NP-hardness of computation of s2 means: When we have
n = 100 data points, then we need computation time 2100 = ∞.
This is truly bad news.

M. Černý & M. Hlad́ık (Prague, CZ) Complexity & Statitics 13 / 22



Sample variance & complexity

Well. . . NP-hardness of computation of s2 means: When we have
n = 100 data points, then we need computation time 2100 = ∞.
This is truly bad news.

Even approximate computation of s2 is impossible.
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Well. . . NP-hardness of computation of s2 means: When we have
n = 100 data points, then we need computation time 2100 = ∞.
This is truly bad news.

Even approximate computation of s2 is impossible.

So what can we do now?

Option 1. Give up and go home.

Option 2. Investigate the class of instances making the problem
computationally hard (“complexity core”) and ask a question whether
they occur often or rarely.

Following Option 2, we’ll try to show that the situation isn’t so

catastrophic.
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An algorithm by Ferson et al.

Notation: for an interval x = [x , x ], define

xC := 1
2(x + x) (center), x∆ := 1

2(x − x) (radius)
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Ferson et al.: consider the “1
n
-narrowed” intervals

1
n
xi := [xCi − 1

n
x∆i , x

C
i + 1

n
x∆i ], i = 1, . . . , n.

Theorem: If 1
n
xi ∩

1
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xj = ∅ for all i 6= j , then s2 can be computed in

polynomial time.
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n
-narrowed” intervals

1
n
xi := [xCi − 1

n
x∆i , x

C
i + 1
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x∆i ], i = 1, . . . , n.

Theorem: If 1
n
xi ∩

1
n
xj = ∅ for all i 6= j , then s2 can be computed in

polynomial time.

Another formulation: If there is no k-tuple of indices
1 6 i1 < · · · < ik 6 n such that

⋂

`∈{i1,...,ik}

1
n
x` 6= ∅,

then s2 can be computed in time O(p(n) · 2k), where p is a
polynomial.
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Computation of s2 & Ferson et al. (contd.)

Graph-theoretic reformulation: Let Gn(Vn,En) be the interval graph
over 1

n
x1, . . . ,

1
n
xn:

Vertices: Vn = set of the narrowed intervals 1
n
x1, . . . ,

1
n
xn

Edges: {i , j} ∈ E (i 6= j) iff 1
n
xi ∩

1
n
xj 6= ∅

Let ωn be the size of the largest clique of Gn. Now: the algorithm
works in time O(p(n) · 2ωn).

x1
1

n
x1

x2
1

n
x2

x3
1

n
x3

x4
1

n
x4

x5
1

n
x5

x1

x2
x3

x4

x5

R

largest clique
ωn = 4
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Simulations

Remark. The worst case is bad — e.g. when xC1 = xC2 = · · · = xCn . (Such
instances result from the NP-hardness proof.)

But: What if the data are generated by a random process? Then, do the
“ugly” instances occur frequently, or only rarely?
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Simulations

Assumption: The centers and radii of intervals xi are generated by a
“reasonable” random process:

Centers xCi : sampled from a “reasonable” distribution (continuous,
finite variance) — uniform, normal, exp, . . .

Radii x∆i : sampled from a “reasonable” nonnegative distribution
(continuous, finite variance) — uniform, one-sided normal, exp, . . .
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Assumption: The centers and radii of intervals xi are generated by a
“reasonable” random process:

Centers xCi : sampled from a “reasonable” distribution (continuous,
finite variance) — uniform, normal, exp, . . .

Radii x∆i : sampled from a “reasonable” nonnegative distribution
(continuous, finite variance) — uniform, one-sided normal, exp, . . .

Simulations show Sokol’s conjecture: The clique is logarithmic on
average!

If indeed Eωn = O(log n), then the average computation time is

O(p(n) · 2ωn) = O(p(n) · 2O(log n)) = polynomial(n).

Thus: The algorithm is polynomial on average (even if exponential in
the worst case).
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Sokol’s conjecture
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Sokol’s conjecture II

Furthermore: It seems that var(ωn) = O(1) (“Sokol’s conjecture II”).

Say, for simplicity, that indeed Eωn = log n. By Chebyshev’s
inequality we get:

Pr[ωn > log n + 10
√

var(ωn)︸ ︷︷ ︸
=:K (constant)

] 6 1%.
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Say, for simplicity, that indeed Eωn = log n. By Chebyshev’s
inequality we get:

Pr[ωn > log n + 10
√

var(ωn)︸ ︷︷ ︸
=:K (constant)

] 6 1%.

Thus: in 99% cases, the algorithm of Ferson et al. works in time at
most

p(n) · 2K+log n,

where K does not grow with n.
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Sokol’s conjecture II
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A pair of remarks

To prove the conjectures:

We have random intersection (interval) graphs and we need to
estimate the average size of the largest clique and its variance

Interesting problem for graph theory: our model of a random graph is
different from the traditional models Gn,p and Gn,m
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A pair of remarks

To prove the conjectures:

We have random intersection (interval) graphs and we need to
estimate the average size of the largest clique and its variance

Interesting problem for graph theory: our model of a random graph is
different from the traditional models Gn,p and Gn,m

Further good news:

s2 is computable pseudopolynomially

Main message: although NP-hard in theory, s2 is efficiently
computable “almost always” (in the probabilistic setup) — hard
instances are rare

A nice interdisciplinary problem: statistical motivation,
interval-theoretic and graph-theoretic methods

Some ideas can be generalized for other statistics which are known to
be NP-hard, e.g. the F -ratio

F =
sample variance of x1, . . . , xn/2

sample variance of x(n/2)+1, . . . , xn
.
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Conclusions & further reading

The coefficient of variation (t-ratio) has been studied in our paper
Černý M. and Hlad́ık M. Complexity of computation and
approximation of the t-ratio over one-dimensional interval data.
Comput Stat Data Anal 80, 2014, 26–43.

Many further results can be found in the book H. Nguyen et al.
Computing statistics under interval and fuzzy uncertainty.
Applications to computer science and engineering. Vol. 393 of
Studies in Computational Intelligence, Springer, Berlin, 2012.

We have further results of this kind in linear regression, see e.g. our
preprint Hlad́ık M. and Černý M. Linear regression with interval data:
Computational issues (available from
http://nb.vse.cz/∼cernym/ilr.pdf).

Thank you!

M. Černý & M. Hlad́ık (Prague, CZ) Complexity & Statitics 22 / 22


