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To recall: linear regression, OLS and TLS

Ax −∆b=b

Classical model:
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Classical model:

“Good” estimator: Ordinary Least Squares (OLS)

Find ∆b, x∗ s.t.: Ax∗ = b+∆b is solvable
and ‖∆b‖2 is minimal

x∗ = (ATA)−1AT b
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To recall: linear regression, OLS and TLS

Ax −∆b=b

known known unknown

unknown

unknownClassical model:

errors

Errors-in-variables (EIV) model:

Ax −∆b=b

“Good” estimator: Total Least Squares (TLS)

(A′ +∆A)x∗ = b+∆bFind ∆A,∆b, x∗ s.t.: is solvable
and ‖(∆A,∆b)‖F is minimal

A −∆A=A′
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A reformulation

TLS finds: ∆A,∆b s.t.

(A′ +∆A)x = b +∆b is solvable and

‖(∆A,∆b)‖F is minimal, where

‖Q‖F =

√

∑

i ,j

Q2
ij =

√

trace(QTQ) is the Frobenius norm.

Our problem (Chebyshev Norm Problem, CNP): find ∆A,∆b s.t.

(A′ +∆A)x = b +∆b is solvable and

‖(∆A,∆b)‖max is minimal, where

‖Q‖max = max
i ,j

|Qij | is the Chebyshev norm.
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Motivation

Why to replace ‖ · ‖F by another norm?

Robustness arguments — a usage of different norms is a usual
method in robust statistics (‖ · ‖F is sensitive to outliers and often
ill-conditioned);

Estimation theory arguments — under certain probabilistic
assumptions on the errors ∆A,∆b, the solution obtained from the
Chebyshev Norm Problem gives a consistent estimator for the EIV
model.
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Intermezzo: Interval computation

Definition. Interval (m × n)-matrix is a system of matrices

A = [A,A] = {A ∈ R
m×n : A 6 A 6 A},

where A 6 A ∈ R
m×n are given and “6” is understood componentwise.

Definition. Solution set of a system of interval-valued linear equations
Ax = b is defined as

S(A,b) = {x ∈ R
n : (∃A ∈ A)(∃b ∈ b) Ax = b}.

Interval-theoretic reformulation of the Chebyshev Norm Problem
(CNP): Find the minimum δ such that

S([A′ − δE ,A′ + δE ], [b − δe, b + δe]) 6= ∅,

where E is the all-one matrix and e is the all-one vector.
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Oettli-Prager Theorem

Lemma (Oettli-Prager).

S(A,b) = {x ∈ R
n : |ACx − bC | 6 A∆|x |+ b∆},

where AC = 1
2(A+ A) is the center matrix and A∆ = 1

2(A− A) is the
radius matrix.

Corollary — characterization of the CNP system:

S([A′ − δE ,A′ + δE ], [b − δe, b + δe])

= {x ∈ R
n : |A′x − b| 6 δE |x | + δe}

=
⋃

s∈{±1}n







x ∈ R :
(A′ − δEDs)x 6 b + δe,

(−A′ − δEDs)x 6 −b + δe,

Dsx > 0







,

where Ds = diag(s).
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Example of the CNP system

⋃

s∈{±1}n

{

(A′ − δEDs )x 6 b + δe, (−A′ − δEDs )x 6 −b + δe, Dsx > 0
}
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Another example of the CNP system

⋃

s∈{±1}n

{

(A′ − δEDs )x 6 b + δe, (−A′ − δEDs )x 6 −b + δe, Dsx > 0
}

A′ =
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Reduction to 2n GLFPs

To recall: To solve CNP, we are to find the minimum δ such that the
CNP system

⋃

s∈{±1}n

{

(A′ − δEDs )x 6 b + δe, (−A′ − δEDs )x 6 −b + δe, Dsx > 0
}

is nonempty.

The main observation: In a given orthant s ∈ {±1}n, it suffices to solve
the following generalized linear-fractional programming (GLFP) problem:

min
x∈Rn

max
i∈{1,...,m}
j∈{0,1}

(−1)1−jA′
ix + (−1)jbi

eTDsx + 1
s.t. Dsx > 0,

where A′
i is the i -th row of A′.

An important (well-known) fact. GLFP can be solved in polynomial
time via interior point methods.
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Remarks

We have shown:

Bad news. The algorithm is exponential in n, the number of
regression parameters.

Good news. The algorithm is not exponential in m, the number of
observations.

Since usually n ≪ m, we can say:

Corollary. As long as n = O(1) (i.e., n is a constant independent of m),
the method runs in polynomial time.

Comment. In practive we work with regression models with up to n = 20
(say) regression parameters. And 220 is large, but still tractable.

The main question. Can we achieve a better algorithm?

Theorem. The answer is NO. (CNP is NP-hard.)
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Example: a simulation study

A probabilistic setup:

two regression parameters, their true values are zero

the observations of the regressors are contaminated by independent
errors sampled from Unif(−γ, γ), where γ > 0 is a parameter

the observations of the dependent variable are contaminated by
independent errors sampled from Unif(−γ, γ)
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Example: a simulation study
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Remarks and conclusions

Further results. Since the CNP problem is NP-hard, we are
interested in designing heuristics. We have also designed some
methods for

poly-time computable lower bounds,
poly-time computable upper bounds.

Current work. Now we are investigating under which probabilistic
assumptions on the errors ∆A,∆b the CNP problem gives a
consistent estimator of the regression parameters and what is the
speed of convergence.

Other norms. The TLS problem is interesting not only with the
Chebyshev norm. Other matrix norms are of interest as well.

Thank you for your attention.
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