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Why positive (semi)definiteness of interval matrices?
In global optimization, for convexity checking:
@ If a function is convex on a box, then a stationary point is a minimum.

@ If a function is convex nowhere on a box, and the box is inside the
feasible set, then there is no minimum inside.

Also:

@ Hurwitz stability of dynamical systems.

@ Schur stability of dynamical systems.




Interval Matrix
An interval matrix

A=[AA={AcR™"| A< A<A}

The center and radius matrices

A = %(Z +A), AP .= %(Z — A).
The set of all m x n interval matrices: TR™*".

A Symmetric Interval Matrix
AS ={AcA:A=AT}
Without loss of generality assume that A= AT, A=A", and AS # (),




Positive Semidefiniteness and Positive Definiteness

AS is strongly positive (semi)definite if every A € AS is positive
(semi)definite.

Theorem (Rohn, 1994)

The following are equivalent
@ A° is positive semidefinite,
Q A — diag(z)AL diag(z) is positive semidefinite ¥z € {41}",
© xTAx — |x|TA2|x| > 0 for each x € R".

Theorem (Rohn, 1994)
The following are equivalent
O ASis positive definite,
Q A — diag(z)AA diag(z) is positive definite for each z € {£1}",
Q xTAx — |x|TA®|x| > 0 for each 0 # x € R",
@ A€ is positive definite and A is regular.




Complexity

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of A® is co-NP-hard.

Theorem (Rohn, 1994)
Checking positive definiteness of A> is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive semidefinite matrix in A® is a
polynomial time problem.

Proof.

By reduction to semidefinite programming. ]




Sufficient Conditions

Theorem
@ A° is positive semidefinite if Amin(A°) > p(A%).
@ A° is positive definite if Amin(AS) > p(AR).

© A° is positive definite if A€ is positive definite and
p(I(A°)HA%) < 1.

Proof.

@ A’ is positive semidefinite iff Amin(A) > 0 VA € AS.
Now, employ the smallest eigenvalue set enclosure

Amin(A) € [Amin(AS) = p(A2), Amin(A°) + p(AR)] VA € AS.

© Analogous.

© Use Beeck's sufficient condition for regularity of A. O




Application: Convexity Testing

Theorem

A function f : R" — R is convex on x € IR" iff its Hessian V2f(x) is
positive semidefinite Vx € intx.

Corollary

A function f : R" +— R is convex on x € IR" if V2f(x) is positive
semidefinite.




Application: Convexity Testing

Example
Let

f(x,y,z) = x>+ 2x%y — xyz + 3yz> + 8y?,
onxex=1[2,3],yey=][1,2] and z € z=[0,1]. The Hessian of f reads

6x+4y 4x—z —y
V3f(x,y,z) = | 4x —z 16 —x + 6z
—y —X + 6z 6y
Evaluation the Hessian matrix by interval arithmetic results in
[16,26] [7,12] —[1,2]
V3f(x,y,2) C | [7,12] 16  [-3,4]

Now, both sufficient conditions for positive definiteness succeed.

Thus, we can conclude that f si convex on the interval domain.




Parametric Interval Matrices

Parametric Interval Matrix

Consider
K
Alp) =Y AWp,,
k=1
where AQ) . AK) ¢ R"™" are fixed symmetric matrices and ps, ..., pk
are parameters varying respectively in py,...,px € IR.
Definition

e A(p), p € p, is strongly positive (semi)definite if A(p) is positive
(semi)definite for each p € p.

@ It is weakly positive (semi)definite if A(p) is positive (semi)definite for
at least one p € p.

V.




Parametric Interval Matrices

Relaxation
Evaluation A(p) = Zk L Ap, by interval arithmetic
@ encloses the set of matrices A(p), p € p,

@ may lead to loss of strong positive (semi-)definiteness.

Example
Let

Ap) = G 1) p, pep=[01]

This parametric matrix is strongly positive semidefinite, but its relaxation

(0.1 [0.1]
A(p)‘<[o,11 [0,11>

is not as it contains, e.g., the indefinite matrix

(o)
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Strong Positive Semidefiniteness

Theorem

The following are equivalent:

(1) A(p) is positive semidefinite for each p € p,

(2) A(p) is positive semidefinite for each p such that px € {p,,Pi} Yk,

(3) xTA(P)x — 5, IxT AR x|pf > 0 for each x € R™.

o It reduces the problem to checking positive semidefiniteness of 2K
real matrices.

@ The number can be further decreased in some cases.

Theorem

(1) If AW) is positive semidefinite for some i, then we can fix p; == p; for

checking strong positive semidefiniteness.

(2) If A) is negative semidefinite for some i, then we can fix p; := p; for

checking strong positive semidefiniteness.
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Strong Positive Semidefiniteness — Sufficient Condition
Theorem

For each k, split A(K) = Agk) — Agk) such that both Agk), Agk) are positive

semidefinite. Then A(p), p € p, is strongly positive semidefinite if

EK: ( 5 )Pk A§ )Pk)

k=1
is positive semidefinite.

How to Do the Splitting

Q Let AK) = QAQT be a spectral decomposition of AK).
@ Let AT be the positive part of A.
© Let A~ be the negative part of A.

© Then AK) = QAQT = QATQT — QA QT and both QATQT,
QA= QT are positive semidefinite.

Overall cost: K + 1 spectral decompositions.




Weak Positive Semidefiniteness

Theorem

Checking weak positive semidefiniteness is a polynomial problem.

Proof.

By reduction to semidefinite programming. Let M(p) be the block
diagonal matrix with blocks

A(p)7 Pl_Bl7 0oog pK_BKu 51_[31, -y PK — PK-

@ All entries of M(p) depends affinely on variables p.

@ Positive definiteness of M(p) is equivalent to positive definiteness of
A(p) and feasibility of variables p € p.

Therefore, by solving this semidefinite program we check whether A(p),
p € p, is weakly positive semidefinite. [

v

13/1



Strong Positive Definiteness

Theorem (The following are equivalent)

(1) A(p), p € p, is strongly positive definite,

(2) A(p) is positive definite for each p such that px € {p, ,P\} Yk,
(3) xTA(P)x — S5, IxT AR x|pf > 0 for each 0 # x € R".

Theorem
(1) If AW) is positive semidefinite for some i, then we can fix p; == p; for
checking strong positive definiteness.

(2) If AU) is negative semidefinite for some i, then we can fix p; := p; for
checking strong positive definiteness.

Theorem (Sufficient Condition)

Foreach k =1,..., K, split At = A% — A% sich that both AL ALY
are positive semidefinite. Then A(p), p € p, is strongly positive definite if

Zszl (Agk)gk - Agk)ﬁk) is positive definite.




Strong Positive Definiteness and Regularity

Definition
A(p), p € p, is called regular if A(p) is nonsingular for each p € p.

Theorem

The parametric matrix A(p), p € p, is strongly positive definite if and only
if A(p) is positive definite for some p € p and A(p), p € p, is regular.

v

Beeck sufficient regularity criterion
A(p), p € p, is regular if

p(M%) <1,
where

M := 32 (CAW) py,
and C = A(p°)~! is the preconditioner.

4

Both sufficient conditions for strong positive definiteness are incomparable.)
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Application in Convexity Testing

Consider a class of functions
L
f(x) = Z CoXig Xjg Xy s
(=1

where iy, jo, ke € {0, ..., n} are not necessarily mutually different, and
X0 — 1.

Problem
Check for convexity of f(x) on x € IR".

@ The Hessian matrix has directly a linear parametric form.

@ Each entry of the Hessian of f(x) is a linear function with respect to
x € R".

@ The variables x play the role of the parameters p, and their domain x
works as p.
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Application in Convexity Testing — Example

Example
Check convexity of

f(x,y,2) = x>+ 2x°y — xyz + 3yz* + 5y?,
onxex=1[2,3],yey=][1,2] and z € z=[0,1]. The Hessian of f reads

6x+4y 4x—z —y
V2f(x,y,z) = | 4x —z 10 —Xx + 6z
—y —x + 6z 6y

Relaxation leads to
Vf(x,y,z) C | [7,12] 10 [-3,4]
- [17 2] [_37 4] [6? ]-2]

which is not strongly positive semidefinite.

)

Nevertheless, the sufficient conditions succeeds to prove convexity!
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Conclusion

@ Extension of characterization of positive (semi)definiteness of interval
matrices to parametric forms.

@ Surprisingly, finite reduction is possible.

@ Even more surprisingly, complexity needn't be worse (from 2" to 2K).
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