
Introduction to Interval Computation
Interval Programming 1

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 33

Outline

1 Motivation

2 Interval Computations

3 Interval Functions

4 Algorithmic Issues

2 / 33

Next Section

1 Motivation

2 Interval Computations

3 Interval Functions

4 Algorithmic Issues

3 / 33

Introduction

Interval computation = solving problems with interval data.

Where interval data do appear

1 numerical analysis (handling rounding errors)

2 computer-assisted proofs

3 global optimization

4 modelling uncertainty
(an alternative to fuzzy and stochastic programming)

4 / 33

Numerical Analysis

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .

5 / 33

Computer-Assisted Proofs

Kepler conjecture

What is the densest packing of balls? (Kepler,
1611)

That one how the oranges are stacked in a shop.

The conjecture was proved by T.C. Hales (2005).

Double bubble problem

What is the minimal surface of two given volumes?

Two pieces of spheres meeting at an angle of 120◦.

Hass and Schlafly (2000) proved the equally sized case.
Hutchings et al. (2002) proved the general case.

6 / 33

Global Optimization

Rastrigin’s function f (x) = 20 + x2
1 + x2

2 − 10(cos(2πx1) + cos(2πx2))

7 / 33

Further Sources of Intervals

Mass number of chemical elements (sue to several stable isotopes)

[12.0096, 12.0116] for the carbon

physical constants

[9.78, 9.82]ms−2 for the gravitational acceleration

mathematical constants

π ∈ [3.1415926535897932384, 3.1415926535897932385].

measurement errors

temperature measured 23◦C± 1◦C

discretization

time is split in days
temperature during the day in [18, 29]◦C for Semnan in May

missing data

What was the temperature in Semnan on May 12, 1999?
Very probably in [10, 40]◦C.

processing a state space

find robot singularities, where it may breakdown
check joint angles [0, 180]◦.

8 / 33

Next Section

1 Motivation

2 Interval Computations

3 Interval Functions

4 Algorithmic Issues

9 / 33

Interval Computations

Notation

An interval matrix

A := [A,A] = {A ∈ Rm×n | A ≤ A ≤ A}.
The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

Main Problem

Let f : Rn 7→ Rm and x ∈ IRn. Determine the image

f (x) = {f (x) : x ∈ x}.

10 / 33

Interval Arithmetic

Interval Arithmetic

a+ b = [a + b, a + b],

a− b = [a − b, a − b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)], 0 6∈ b.

Theorem (Basic properties of interval arithmetic)

Interval addition and multiplication is commutative and associative.

It is not distributive in general, but sub-distributive instead,

∀a,b, c ∈ IR : a(b+ c) ⊆ ab+ ac.

Example (a = [1, 2], b = 1, c = −1)

a(b+ c) = [1, 2] · (1− 1) = [1, 2] · 0 = 0,

ab+ ac = [1, 2] · 1 + [1, 2] · (−1) = [1, 2] − [1, 2] = [−1, 1].
11 / 33

Exercises for YOU

Prove or Disprove

For a,b, c ∈ IR and d ∈ R:
1 a+ b = a+ c ⇒ b = c.

2 (b+ c)d = bd + cd

3 (a ≥ 0 and ab = ac) ⇒ b = c.

4 a ⊆ b ⇔ |ac − bc |+ a∆ ≤ b∆,

5 a ∩ b 6= ∅ ⇔ |ac − bc | ≤ a∆ + b∆,

12 / 33

Next Section

1 Motivation

2 Interval Computations

3 Interval Functions

4 Algorithmic Issues

13 / 33

Images of Functions

Monotone Functions

If f : x → R is non-decreasing, then f (x) = [f (x), f (x)].

Example

exp(x) = [exp(x), exp(x)], log(x) = [log(x), log(x)], . . .

Some Basic Functions

Images x2, sin(x), . . . , are easily calculated, too.

x2 =

{
[min(x2, x2),max(x2, x2)] if 0 6∈ x,

x2 = [0,max(x2, x2)] otherwise

But. . .

. . . what to do for more complex functions?

14 / 33

Images of Functions

Notice

f (x) need not be an interval (neither closed nor connected).

Interval Hull �f (x)

Compute the interval hull instead

�f (x) =
⋂

v ∈ IRn : f (x) ⊆ v

v.

Bad News

Computing �f (x) is still very difficult.

Interval Enclosure

Compute as tight as possible v ∈ IRn : f (x) ⊆ v.

15 / 33

Interval Functions

Definition (Inclusion Isotonicity)

f : IRn 7→ IR is inclusion isotonic if for every x, y ∈ IRn :

x ⊆ y ⇒ f(x) ⊆ f(y).

Definition (Interval Extension)

f : IRn 7→ IR is an interval extension of f : Rn 7→ R if for every x ∈ Rn :

f (x) = f(x).

Theorem (Fundamental Theorem of Interval Analysis)

If f : IRn 7→ IR satisfies both properties, then

f (x) ⊆ f(x), ∀x ∈ IRn.

Proof.

For every x ∈ x, one has by interval extension and inclusion isotonicity
that f (x) = f(x) ⊆ f(x), whence f (x) ⊆ f(x).

16 / 33

Natural Interval Extension

Definition (Natural Interval Extension)

Let f : Rn 7→ R be a function given by an arithmetic expression. The
corresponding natural interval extension f of f is defined by that
expression when replacing real arithmetic by the interval one.

Theorem

Natural interval extension of an arithmetic expression is both an interval
extension and inclusion isotonic.

Proof.

It is easy to see that interval arithmetic is both an interval extension and
inclusion isotonic. Next, proceed by mathematical induction.

17 / 33

Natural Interval Extension

Example

f (x) = x2 − x , x ∈ x = [−1, 2].

Then

x2 − x = [−1, 2]2 − [−1, 2] = [−2, 5],

x(x− 1) = [−1, 2]([−1, 2] − 1) = [−4, 2],

Best one?(x− 1
2)

2 − 1
4 = ([−1, 2] − 1

2)
2 − 1

4 = [−1
4 , 2].

Theorem

Suppose that in an expression of f : Rn 7→ R each variable x1, . . . , xn
appears at most once. The corresponding natural interval extension f(x)
satisfies for every x ∈ IRn: f (x) = f(x).

Proof.

Inclusion “⊆” by the previous theorems.
Inclusion “⊇” by induction and exactness of interval arithmetic.

18 / 33

Software

Matlab libraries

Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/

Versoft (by J. Rohn),
verification software written in Intlab
http://uivtx.cs.cas.cz/~rohn/matlab/

Lime (by M. Hlad́ık, J. Horáček et al.),
interval methods written in Intlab, under development

Other languages libraries

Int4Sci Toolbox (by Coprin team, INRIA),
A Scilab Interface for Interval Analysis
http://www-sop.inria.fr/coprin/logiciels/Int4Sci/

C++ libraries: C-XSC, PROFIL/BIAS, BOOST interval, FILIB++,. . .

many others: for Fortran, Pascal, Lisp, Maple, Mathematica,. . .

19 / 33

References – books

G. Alefeld and J. Herzberger.
Introduction to Interval Computations.
Academic Press, New York, 1983.

L. Jaulin, M. Kieffer, O. Didrit, and É. Walter.
Applied Interval Analysis.
Springer, London, 2001.

R. E. Moore.
Interval Analysis.
Prentice-Hall, Englewood Cliffs, NJ, 1966.

R. E. Moore, R. B. Kearfott, and M. J. Cloud.
Introduction to Interval Analysis.
SIAM, Philadelphia, PA, 2009.

A. Neumaier.
Interval Methods for Systems of Equations.
Cambridge University Press, Cambridge, 1990.

20 / 33

Next Section

1 Motivation

2 Interval Computations

3 Interval Functions

4 Algorithmic Issues

21 / 33

Algorithmic Issues

Motivation

Interval Analysis is not only an exciting theory, but is should be
useful in practice

Useful in practice = efficient algorithms

Therefore, theory of algorithms plays an important role

In IntAnal, we meet many notions from Recursion Theory and
Complexity Theory. For example:

non-recursivity (= algorithmic unsolvability)

NP-completeness, coNP-completeness

weak and strong polynomiality

Turing model and real-number computation model

22 / 33

AlgoIss: Nonrecursivity

In mathematics, there are many problems which are nonrecursive = not
algorithmically solvable at all. Three examples:

Diophantine equations (Matiyasevich’s Theorem, 1970; Hilbert’s
Tenth Problem, 1900)

Input: a polynomial p(x1, . . . , x9) with integer coefficients.

Task: decide whether there exist x∗1 , . . . , x
∗
9 ∈ Z such that

p(x∗1 , . . . , x
∗
9) = 0.

Provability (Gödel’s Theorem, 1931)

Input: a claim (= closed formula in the set-theoretic language) ϕ.

Task: decide whether ϕ is provable in Set Theory (say, ZFC).

Randomness of a coin toss

Input: a finite 0-1 sequence γ and a number K .

Task: decide whether Kolmogorov complexity of γ is greater than K .

23 / 33

AlgoIss: Nonrecursivity (contd.)

The core nonrecursive problem of Interval Analysis:

Input: a function f : Rn → R, intervals x1, . . . , xn and ξ ∈ R.
Task: decide whether ξ ∈ f (x1, . . . , xn).

Negative results

In general, we cannot determine the range of a function over intervals.

In general, we cannot determine the interval hull �f (x1, . . . , xn).

In general, we cannot determine an approximation of �f (x1, . . . , xn)
with a prescribed precision.

Positive research motivation

Find special classes of functions for which determination or
approximation of �f (x1, . . . , xn) is algorithmically solvable.

Find special classes of functions for which �f (x1, . . . , xn) is
efficiently computable, i.e. in polynomial computation time.

24 / 33

AlgoIss: Nonrecursivity (contd.)

Proof-idea that “ξ ∈? range(f)” is nonrecursive

By Matiyasevich we know that given a polynomial p(x1, . . . , x9), it is
nonrecursive to decide whether p has a integer-valued root.

Let p(x1, . . . , x9) be given and consider the function

f (x1, . . . , xn) = p(x1, . . . , x9)
2 +

9∑

i=1

sin2(πxi).

Now 0 ∈ range(f) iff p(x1, . . . , x9) has an integer-valued root.

The proof showed an example of a reduction of one problem to
another. This is the proof-method for hardness-of-computation
results.

We reasoned as follows: if somebody designed an algorithm for the
question “ξ ∈? range(f)”, then she would have solved the question
“does p have an integer-valued root?”. But the latter is impossible.

25 / 33

AlgoIss: An example of recursive, but “inefficient” problem

Problem formulation

Let p(x1, . . . , xn) be a polynomial over given intervals x1, . . . , xn. By
continuity we have

range(p) = �p = max{p(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn},
range(p) = �p = min{p(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

Is computation of �p, �p recursive?

Yes.

Proof-idea: use Tarski’s Quantifier Elimination Method (completeness
of the theory of Real Closed Fields).

But: computation time can be double-exponential.

So the problem is recursive, but inefficient for practical purposes.

26 / 33

AlgoIss: polynomiality, NP, coNP, hardness, completeness

Polynomiality

Consensus. Efficient algorithm = algorithm running in time p(L),
where p is a polynomial and L is the bit-size of input.

Example. Interval arithmetic runs in polynomial time.

Example. Linear programming runs is polynomial time (e.g. Ellipsoid
Method, IPMs; but not the Simplex Method!).

Remark. In numerical problems, the bit-size L involves also lengths
of encodings of binary representations of rational numbers.

Recall that this is a serious issue in linear programming: all known
poly-time algorithms for LP are weakly polynomial.
So keep in mind: whenever we prove a polynomial-time result in
Interval Analysis, which uses LP as a subroutine (which is a frequent
case), we have a weakly polynomial result.
Weak polynomiality of LP is one of Smale’s Millenium Problems for
21st century.

27 / 33

AlgoIss: polynomiality, NP, coNP, hardness, completeness

NP, coNP

NP = a class of YES/NO problems s.t. a YES answer has a short and
efficiently verifiable witness.

coNP = a class of YES/NO problems s.t. a NO answer has a short
and efficiently verifiable witness.

Examples

CNFSAT: Is a given boolean formula in conjunctive normal form
satisfiable? (NP)

TAUT: Is a given boolean formula tautology? (coNP)

TSP: Given a graph G with weighted edges and a number K , does G
have a Hamiltonian cycle with length ≤ K? (NP)

KNAPSACK: Does a given equation aTx = b with a ≥ 0 have a 0-1
solution? (NP)

ILP: Does a given inequality system Ax ≤ b have an integer solution?
(NP, nontrivial proof)

28 / 33

AlgoIss: polynomiality, NP, coNP, hardness, completeness

Reductions

Informally: When every instance of a problem A can be written as a
particular instance of a problem B, then we say that A is reducible
to B. We write

A ≤ B.

Example: CNFSAT ≤ ILP. To illustrate, the CNFSAT-instance

(x1 ∨ ¬x2 ∨ ¬x3) & (¬x1 ∨ x4 ∨ ¬x5) & (¬x1 ∨ ¬x2)
can be written as the ILP-instance

x1 + (1− x2) + (1− x3) ≥ 1,

(1− x1) + x4 + (1− x5) ≥ 1,

(1− x1) + (1− x2) ≥ 1,

xi ∈ {0, 1} (∀i).

29 / 33

AlgoIss: polynomiality, NP, coNP, hardness, completeness

Completeness

B is NP-hard ⇔ (∀A ∈ NP) A ≤ B,

B is coNP-hard ⇔ (∀A ∈ coNP) A ≤ B,

B is NP-complete ⇔ B ∈ NP and is NP-hard,

B is coNP-complete ⇔ B ∈ coNP and is coNP-hard.

Importance

For (co)NP-hard (complete) problems we know only 2n-algorithms or
worse.

Showing that a problem is (co)-NP hard (complete) is bad news: only
small instances can be computed.

Showing that a problem is (co)-NP hard (complete) is good news for
research: inspect subproblems (special cases) which are tractable; or
deal with approximate algorithms.

30 / 33

AlgoIss: polynomiality, NP, coNP, hardness, completeness

Generic problems

Some well-known NP-complete problems: CNFSAT, ILP, TSP.

Basic coNP-complete problem: TAUT.

Following Jǐŕı Rohn (our teacher, colleague and a celebrated
personality in IntAnal), the following generic NP-complete problem is
often used: given a matrix A, decide whether there is x ∈ Rn s.t.

|Ax | ≤ e, ‖x‖1 ≥ 1.

2n-algorithm: ∀s ∈ {−1, 1}n set Ts = diag(s) and solve the LP

−e ≤ Ax ≤ e, eTTsx ≥ 1.

Rohn’s NP-completeness result shows that this is “the best”
algorithm we can expect.

The 2n-algorithm inspects Rn orthant-by-orthant; we will meet this
orthant decomposition method repeatedly. (REMEMBER THIS!)

31 / 33

AlgoIss: polynomiality, NP, coNP, hardness, completeness

NP-hardness

We use “NP-hardness” also for other than YES/NO problems.

Then we say that a problem A is NP-hard if the following holds: if A
is solvable in polynomial time, then CNFSAT is solvable in polynomial
time (and thus P = NP).

Example: given a polynomial p(x1, . . . , xn),

computation of p(x1, . . . , xn) is NP-hard,
computation of p(x1, . . . , xn) is NP-hard.

32 / 33

AlgoIss: Examples of complexity of computation of �f

To recall: the basic problem of Interval Analysis is: given a function f and
intervals x1, . . . , xn, determine �f (x1, . . . , xn). Examples from statistics:

Example: sample mean f ≡ µ := 1
n

∑n
i=1 xi

Both �µ and �µ can be computed in polynomial time by interval arithmetic.

Example: sample variance f ≡ σ2 := 1
n

∑n
i=1(xi − µ)2

�σ2: polynomial time.

�σ2: NP-hard, computable in time 2n.

inapproximability result: approximate computation of �σ2 with an arbitrary
absolute error: NP-hard.

Example: variation coefficient f ≡ t := µ
σ

t: NP-hard, computable in time 2n.

inapproximability result: approximate computation of t with an arbitrary absolute
error: NP-hard.

t: computable in polynomial time.

33 / 33

Interval linear equations, part I.
Interval Programming 2

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 31

Outline

1 Interval Linear Equations – Solution Concept

2 Enclosure Methods

3 Application: Verification of Real Linear Equations

4 Algorithmic Issues

2 / 31

Next Section

1 Interval Linear Equations – Solution Concept

2 Enclosure Methods

3 Application: Verification of Real Linear Equations

4 Algorithmic Issues

3 / 31

Solution Set

Interval Linear Equations

Let A ∈ IRm×n and b ∈ IRm. The family of systems

Ax = b, A ∈ A, b ∈ b.

is called interval linear equations and abbreviated as Ax = b.

Solution set

The solution set is defined

Σ := {x ∈ Rn : ∃A ∈ A∃b ∈ b : Ax = b}.

Important Notice

We do not want to compute x ∈ IRn such that Ax = b.

Theorem (Oettli–Prager, 1964)

The solution set Σ is a non-convex polyhedral set described by

|Acx − bc | ≤ A∆|x |+ b∆.

4 / 31

Proof of the Oettli–Prager Theorem

Let x ∈ Σ, that is, Ax = b for some A ∈ A and b ∈ b. Now,

|Acx − bc | = |(Ac − A)x + (Ax − b) + (b − bc)| = |(Ac − A)x + (b − bc)|
≤ |Ac − A||x |+ |b − bc | ≤ A∆|x |+ b∆.

Conversely, let x ∈ Rn satisfy the inequalities. Define y ∈ [−1, 1]m as

yi =

{
(Acx−bc)i

(A∆|x |+b∆)i
if (A∆|x |+ b∆)i > 0,

1 otherwise.

Now, we have (Acx − bc)i = yi(A
∆|x |+ b∆)i , or,

Acx − bc = diag(y)(A∆|x |+ b∆).

Define z := sgn(x), then |x | = diag(z)x and we can write

Acx − bc = diag(y)A∆ diag(z)x + diag(y)b∆,

or

(Ac − diag(y)A∆ diag(z))x = bc + diag(y)b∆.

5 / 31

Example of the Solution Set

Example (Barth & Nuding, 1974))

(
[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(
x1
x2

)
=

(
[−2, 2]
[−2, 2]

)

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4 x1

x2

6 / 31

Example of the Solution Set

Example




[3, 5] [1, 3] −[0, 2]
− [0, 2] [3, 5] [0, 2]
[0, 2] −[0, 2] [3, 5]






x1
x2
x3


 =



[−1, 1]
[−1, 1]
[−1, 1]


 .

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

7 / 31

Topology of the Solution Set

Proposition

In each orthant, Σ is either empty or a convex polyhedral set.

Proof.

Restriction to the orthant given by s ∈ {±1}n:
|Acx − bc | ≤ A∆|x |+ b∆, diag(s)x ≥ 0.

Since |x | = diag(s)x , we have

|Acx − bc | ≤ A∆ diag(s)x + b∆, diag(s)x ≥ 0.

Using |a| ≤ b ⇔ a ≤ b, −a ≤ b, we get

(Ac − A∆ diag(s))x ≤ b, (−Ac − A∆ diag(s))x ≤ −b, diag(s)x ≥ 0.

Corollary

The solutions of Ax = b, x ≥ 0 is described by Ax ≤ b, Ax ≥ b, x ≥ 0.

8 / 31

Interval Hull �Σ

Goal

Seeing that Σ is complicated, compute �Σ instead.

First Idea

Go through all 2n orthants of Rn, determine interval hull of restricted sets
(by solving 2n linear programs), and then put together.

Theorem

If A is regular (each A ∈ A is nonsingular), Σ is bounded and connected.

Theorem (Jansson, 1997)

When Σ 6= ∅, then exactly one of the following alternatives holds true:

1 Σ is bounded and connected.

2 Each topologically connected component of Σ is unbounded.

Second Idea – Jansson’s Algorithm

Check the orthant with (Ac)−1bc and then all the topologically connected.
9 / 31

Exercises for YOU

Prove or Disprove

1 x ∈ Σ if and only if 0 ∈ Ax − b,

2 x ∈ Σ if and only if Ax ∩ b 6= ∅.

10 / 31

Polynomial Cases

Two Basic Polynomial Cases
1 Ac = In,

2 A is inverse nonnegative, i.e., A−1 ≥ 0 ∀A ∈ A.

Theorem (Kuttler, 1971)

A ∈ IRn×n is inverse nonnegative if and only if A−1 ≥ 0 and A
−1 ≥ 0.

Theorem

Let A ∈ IRn×n be inverse nonnegative. Then

1 �Σ = [A
−1

b,A−1b] when b ≥ 0,

2 �Σ = [A−1b,A
−1

b] when b ≤ 0,

3 �Σ = [A−1b,A−1b] when 0 ∈ b.

Proof.

1 Let A ∈ A and b ∈ b. Since b ≥ b ≥ b ≥ 0 and

A−1 ≥ A−1 ≥ A
−1 ≥ 0, we get A

−1
b ≤ A−1b ≤ A−1b.

11 / 31

Next Section

1 Interval Linear Equations – Solution Concept

2 Enclosure Methods

3 Application: Verification of Real Linear Equations

4 Algorithmic Issues

12 / 31

Preconditioning

Enclosure

Since Σ is hard to determine and deal with, we seek for enclosures

x ∈ IRn such that Σ ⊆ x.

Many methods for enclosures exists, usually employ preconditioning.

Preconditioning (Hansen, 1965)

Let C ∈ Rn×n. The preconditioned system of equations:

(CA)x = Cb.

Remark

the solution set of the preconditioned systems contains Σ

usually, we use C ≈ (Ac)−1

then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)

13 / 31

Preconditioning

Example (Barth & Nuding, 1974))

(
[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(
x1
x2

)
=

(
[−2, 2]
[−2, 2]

)

7

14

−7

−14

7 14−7−14 x1

x2

14 / 31

Preconditioning

Example (typical case)

(
[6, 7] [2, 3]
[1, 2] −[4, 5]

)(
x1
x2

)
=

(
[6, 8]
− [7, 9]

)

2.5

1.5

0.5 1.0−0.5 x1

x2

15 / 31

Interval Gaussian Elimination

Interval Gaussian elimination = Gaussian elimination + interval arithmetic.

Example (Barth & Nuding, 1974))

(
[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(
x1
x2

)
=

(
[−2, 2]
[−2, 2]

)

Then we proceed as follows
(

[2, 4] [−2, 1] [−2, 2]
[−1, 2] [2, 4] [−2, 2]

)
∼

(
[2, 4] [−2, 1] [−2, 2]
0 [1, 6] [−4, 4]

)
.

By back substitution, we compute

x2 = [−4, 4],

x1 =
(
[−2, 2] − [−2, 1] · [−4, 4]

)
/ [2, 4] = [−5, 5].

16 / 31

Interval Jacobi and Gauss-Seidel Iterations

Idea

From the ith equation of Ax = b we get

xi =
1
aii

(
bi −

∑i−1
j=1 aijxj −

∑n
j=i+1 aijxj

)
.

If x0 ⊇ Σ is an initial enclosure, then

xi ∈ 1
aii

(
bi −

∑
j 6=i aijx

0
j

)
, ∀x ∈ Σ.

Thus, we can tighten the enclosure by iterations

Interval Jacobi / Gauss–Seidel Iterations (k = 1, 2, . . .)

1: for i = 1, . . . , n do

2: xki := 1
aii

(
bi −

∑
j 6=i aijx

k−1
j

)
∩ xk−1

i ;

3: end for

17 / 31

Krawczyk Iterations

Krawczyk operator

Krawczyk operator K : IRn → IRn reads

K (x) := Cb+ (In − CA)x

Proposition

If x ∈ x ∩Σ, then x ∈ K (x).

Proof.

Let x ∈ x ∩Σ, so Ax = b for some A ∈ A and b ∈ b. Thus CAx = Cb,
whence x = Cb + (In − CA)x ∈ Cb+ (In − CA)x = K (x).

Krawczyk Iterations

Let x0 ⊇ Σ is an initial enclosure, and iterate (k = 1, 2, . . .):

1: xk := K (xk−1) ∩ xk−1;

18 / 31

ε-inflation

Theorem

Let x ∈ IRn and C ∈ Rn×n. If

K (x) = Cb+ (I − CA)x ⊆ int x,

then C is nonsingular, A is regular, and Σ ⊆ x.

Proof.

Existence of a solution based on Brouwer’s fixed-point theorem.
Nonsingularity and uniqueness based on the Perron–Frobenius theory.

Remark

A reverse iteration method to the Krawczyk method.

It starts with a small box around (Ac)−1bc , and then interatively
inflates the box.

Implemented in Intlab v. 6.

19 / 31

Next Section

1 Interval Linear Equations – Solution Concept

2 Enclosure Methods

3 Application: Verification of Real Linear Equations

4 Algorithmic Issues

20 / 31

Verification of Real Linear Equations

Problem formulation

Given a real system Ax = b and x∗ approximate solution, find y ∈ IRn

such that A−1b ∈ x∗ + y.

Example

x1

x2

x∗

21 / 31

Verification of Real Linear Equations

Theorem

Let y ∈ IRn and C ∈ Rn×n. If

C (b − Ax∗) + (I − CA)y ⊆ int y,

then C and A are nonsingular, and A−1b ∈ x∗ + y.

Proof.

Substitute x := y + x∗, and apply the ε-inflation method for the system

Ay = b − Ax∗.

ε-inflation method (Caprani and Madsen, 1978, Rump, 1980)

Repeat inflating y := [0.9, 1.1]x + 10−20[−1, 1] and updating

x := C (b − Ax∗) + (I − CA)y

until x ⊆ int y.

Then, Σ ⊆ x∗ + x.

22 / 31

Verification of Real Linear Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., aij =
1

i+j−1), and b := Ae.

Then Ax = b has the solution x = e = (1, . . . , 1)T .

Approximate solution by
Matlab:

0.999999999235452
1.000000065575364
0.999998607887449
1.000012638750021
0.999939734980300
1.000165704992114
0.999727989024899
1.000263042205847
0.999861803020249
1.000030414871015

Enclosing interval by ε-inflation method (2 it-
erations):

[0.99999973843401, 1.00000026238575]
[0.99999843048508, 1.00000149895660]
[0.99997745481481, 1.00002404324710]
[0.99978166603900, 1.00020478046370]
[0.99902374408278, 1.00104070076742]
[0.99714060702796, 1.00268292103727]
[0.99559932282378, 1.00468935360003]
[0.99546972629357, 1.00425202249136]
[0.99776781605377, 1.00237789028988]
[0.99947719419921, 1.00049082925529]

23 / 31

References

G. Alefeld and J. Herzberger.
Introduction to Interval Computations.
Academic Press, New York, 1983.

M. Fiedler, J. Nedoma, J. Raḿık, J. Rohn, and K. Zimmermann.
Linear optimization problems with inexact data.
Springer, New York, 2006.

R. E. Moore, R. B. Kearfott, and M. J. Cloud.
Introduction to interval analysis.
SIAM, Philadelphia, PA, 2009.

A. Neumaier.
Interval methods for systems of equations.
Cambridge University Press, Cambridge, 1990.

J. Rohn.
A handbook of results on interval linear problems.
Tech. Rep. 1163, Acad. of Sci. of the Czech Republic, Prague, 2012.
http://uivtx.cs.cas.cz/~rohn/publist/!aahandbook.pdf

S. M. Rump.
Verification methods: Rigorous results using floating-point arithmetic.
Acta Numer., 19:287–449, 2010.

24 / 31

Next Section

1 Interval Linear Equations – Solution Concept

2 Enclosure Methods

3 Application: Verification of Real Linear Equations

4 Algorithmic Issues

25 / 31

Algorithmic Issues: Solvability of Ax = b

To recall:

System Ax = b is solvable iff (∃A ∈ A)(∃b ∈ b)(∃x ∈ Rn) Ax = b.

Solution set is defined by

Σ(A,b) =
⋃

A∈A, b∈b
{x ∈ Rn : Ax = b}.

Theorem

Checking solvability is an NP-complete problem.

Outline: we must prove (1) NP-hardness and (2) presence in NP.

Proof

Step 1. Proof of NP-hardness. We will show that Rohn’s generic
problem of solvability of −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 is reducible to checking
solvability of a particular system Ax = b.
(Informally: if somebody manages to design an efficient method for checking solvability,
then she also managed to solve the Rohn’s generic problem; but it is impossible unless
P = NP.)

26 / 31

AlgoIss: Solvability of Ax = b (contd.)

Proof of NP-completeness of Σ(A, b) 6=? ∅. Step 1 continued

Claim: Rohn’s system −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 is solvable iff

[A,A]x = [−e, e], [−eT , eT]x = [1, 1] (1)

is solvable. Thus, if we have an efficient method for (1), then we have an
efficient method for Rohn’s system, which is NP-complete. This proves
NP-hardness.

Proof of claim

If x solves Rohn’s system, then x ′ := x
‖x‖1 solves (1). [Proof.

|Ax ′| = 1
‖x‖1 |Ax | ≤ |Ax | ≤ e; thus x ′ solves Ax ′ = [−e, e]. In

addition, ‖x ′‖1 = 1; thus sgn(x ′)T x ′ = 1 and sgn(x ′) ∈ [−e, e].]

If x solves Ax = b, cT x = 1 with b ∈ [−e, e] and c ∈ [−e, e], then
|Ax | = |b| ≤ e and ‖x‖1 = eT |x | ≥ |c |T |x | ≥ cT x = 1. QED

27 / 31

AlgoIss: Solvability of Ax = b (contd.)

Proof of NP-completeness of Σ(A, b) 6=? ∅. Step 2

Step 2. Proof that the problem is in NP.

Intuitively, any pair (A0, b0) s.t.

A0 ∈ A, b0 ∈ b, {x : A0x = b0} 6= ∅ (2)

could serve as an NP-witness. (Observe that the conditions (2) can
be verified in polynomial time.)

However, there is a technical problem: the NP-witness must have
polynomial size. In other words: we must prove that there exists a
polynomial p s.t. bitsize(A0, b0) ≤ p(bitsize(A,A, b, b)).

We proceed otherwise.

28 / 31

AlgoIss: Solvability of Ax = b (contd.)

Proof of NP-completeness of Σ(A, b) 6=? ∅. Step 2 contd.

We use Oettli-Prager: we know that

Σ(A,b) ∩ Rn
s

= {x ∈ Rn : −A∆Tsx − b∆ ≤ Acx − bc ≤ A∆Tsx + b∆,Tsx ≥ 0︸ ︷︷ ︸
(⋆)

},

where s ∈ {−1, 1}n , Ts = diag(s) and Rn
s = {x ∈ Rn : Tsx ≥ 0}.

Given s, nonemptiness of the polyhedron (⋆) can be checked in
polynomial time by LP.

Clearly, bitsize of s is bounded by bitsize(A,A, b, b).

Thus, s s.t. Σ ∩Rn
s 6= ∅ is a valid NP-witness for the fact Σ 6= ∅.

29 / 31

AlgoIss: Boundedness of the solution set

To recall: the solution set is defined as

Σ =
⋃

A∈A, b∈b
{x ∈ Rn : Ax = b}.

Theorem

Deciding whether Σ is bounded is a coNP-complete problem.

Proof idea of coNP-hardness.

Consider the system Ax = 0. Then Σ = Σ(A, [0, 0]) is unbounded iff

there is A ∈ A which is singular. (3)

Later we will show that deciding (3) is an NP-complete problem. So
checking unboundedness of Σ is NP-hard, and checking boundedness is
coNP-hard.

30 / 31

AlgoIss: Computation of �Σ

Some consequences

Every exact enclosure method (i.e. every method computing �Σ and
�Σ exactly) must be implicitly able to detect (at least) the following
“extreme” cases:

Σ = ∅,
Σ is unbounded.

Thus, any enclosure method must be able to solve two NP-complete
problems. Thus �Σ is NP-hard.

So we cannot expect that the 2n-method, based on orthant
decomposition by Oettli-Prager, could be significantly improved.

Further results

The basic results on hardness-of-computation of �Σ can be pushed
further: it holds that even approximate computation of �Σ with a
given absolute error or relative error is NP-hard.

So, in theory, even “not too redundant” enclosures are hard to
compute.

31 / 31

Interval linear equations, part II.
Interval Programming 3

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 33

Outline

1 Regularity of Interval Matrices

2 Parametric Interval Systems

3 AE Solution Set

4 Algorithmic Issues

2 / 33

Next Section

1 Regularity of Interval Matrices

2 Parametric Interval Systems

3 AE Solution Set

4 Algorithmic Issues

3 / 33

Regularity

Definition (Regularity)

A ∈ IRn×n is regular if each A ∈ A is nonsingular.

Theorem

Checking regularity of an interval matrix is co-NP-hard.

Forty necessary and sufficient conditions for regularity of A by Rohn
(2010):

1 The system |Acx | ≤ A∆|x | has the only solution x = 0.

2 det(Ac − diag(y)A∆ diag(z)) is constantly either positive or negative
for each y , z ∈ {±1}n.

3 For each y ∈ {±1}n, the system Acx − diag(y)A∆|x | = y has a
solution.

4 . . .

4 / 33

Regularity – Sufficient / Necessary Conditions

Theorem (Beeck, 1975)

If ρ(|(Ac)−1|A∆) < 1, then A is regular.

Proof.

Precondition A by the midpoint inverse: M := (Ac)−1A. Now,

Mc = In, M∆ = |(Ac)−1|A∆,

and for each M ∈ M we have

|M −Mc | = |M − In| ≤ M∆.

From the theory of eigenvalues of nonnegative matrices it follows

ρ(M − In) ≤ ρ(M∆) < 1,

so M has no zero eigenvalue and is nonsingular.

Necessary Condition

If 0 ∈ Ax for some 0 6= x ∈ Rn, then A is not regular. (Try x := (Ac)−1
∗i)

5 / 33

Exercises for YOU

The following conditions are necessary for the regularity of A. Decide
which of them are sufficient as well:

1 all matrices A of the form aij ∈ {aij , aij} are nonsingular,

2 all matrices A of the form aij ∈ {aij , aij}, and Ac are nonsingular.

6 / 33

Next Section

1 Regularity of Interval Matrices

2 Parametric Interval Systems

3 AE Solution Set

4 Algorithmic Issues

7 / 33

Parametric Interval Systems

Parametric Interval Systems

A(p)x = b(p),

where the entries of A(p) and b(p) depend on parameters
p1 ∈ p1, . . . , pK ∈ pK .

Definition (Solution Set)

Σp = {x ∈ Rn : A(p)x = b(p) for some p ∈ p}.

Relaxation

Compute (enclosures of) the ranges A := A(p) and b := b(p) and solve

Ax = b.

May overestimate a lot!

8 / 33

Special Case: Parametric Linear Interval Systems

Parametric Linear Interval Systems

A(p)x = b(p),

where

A(p) =
K∑

k=1

Akpk , b(p) =
K∑

k=1

bkpk

and p ∈ p for some given interval vector p ∈ IRK , matrices
A1, . . . ,AK ∈ Rn×n and vectors b1, . . . , bn ∈ Rn.

Remark

It covers many structured matrices: symmetric, skew-symmetric, Toeplitz
or Hankel.

9 / 33

Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

f

1

2

3

4

5

10 / 33

Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

K =




s12

2
+ s13 −

s12

2
−

s12

2
−s13 0 0 0

−
s21

2

s21 + s23

2
+ s24

s21 − s23

2
−

s23

2

s23

2
−s24 0

−
s21

2

s21 − s23

2

s21 + s23

2

s23

2
−

s23

2
0 0

−s31 −
s32

2

s32

2
s31 +

s32 + s34

2
+ s35

s34 − s32

2
−

s34

2
−

s34

2

0
s32

2
−

s32

2

s34 − s32

2

s34 + s32

2
−

s34

2
−

s34

2

0 −s42 0 −
s43

2
−

s43

2
s42 +

s43 + s45

2
0

0 0 0 −
s43

2
−

s43

2
0

s43 + s45

2




11 / 33

Parametric Linear Interval Systems – Example

Example

(
1− 2p 1

2 4p − 1

)
x =

(
7p − 9
3− 2p

)
, p ∈ p = [0, 1].

2
4
6

−2
−4
−6
−8

−10
−12
−14
−16
−18

2 4 6 8 10−2−4−6−8−10 x1

x2

0

12 / 33

Parametric Linear Interval Systems – Solution Set

Theorem

If x ∈ Σp, then it solves

|A(pc)x − b(pc)| ≤
K∑

k=1

p∆k |Akx − bk |.

Proof.

|A(pc)x − b(pc)| =
∣∣∣∣

K∑

k=1

pc
k(A

kx − bk)

∣∣∣∣ =
∣∣∣∣

K∑

k=1

pc
k(A

kx − bk)−
K∑

k=1

pk(A
kx − bk)

∣∣∣∣

=

∣∣∣∣
K∑

k=1

(pc
k − pk)(A

kx − bk)

∣∣∣∣ ≤
K∑

k=1

|pc
k − pk ||Akx − bk | ≤

K∑

k=1

p∆
k |Akx − bk |.

Popova (2009) showed that it is the complete characterization of Σp

as long as no interval parameter appears in more than one equation.

Checking x ∈ Σp for a given x ∈ Rn is a polynomial problem via
linear programming.

13 / 33

Parametric Linear Interval Systems – Enclosures

Relaxation and Preconditioning – First Idea

Evaluate A := A(p), b := b(p), choose C ∈ Rn×n and solve

(CA)x = Cb.

Relaxation and Preconditioning – Second Idea

Solve A′x = b′, where

A′ :=
K∑

k=1

(CAk)pk , b′ :=
K∑

k=1

(Cbk)pk .

Second Idea is Provably Better

Due to sub-distributivity law,

A′ :=
K∑

k=1

(CAk)pk ⊆ C

(K∑

k=1

Akpk

)
= (CA).

14 / 33

Special Case: Symmetric Systems

The Symmetric Solution Set of Ax = b

{x ∈ Rn : Ax = b for some symmetric A ∈ A and b ∈ b}.

Described by 1
2(4

n − 3n − 2 · 2n + 3) + n nonlinear inequalities (H., 2008).

Example

A =

(
[1, 2] [0, a]
[0, a] −1

)
, b =

(
2
2

)
.

2

4

6

−2

2 4 6 8 10 x1

x2

0

A =

(
−1 [−5, 5]

[−5, 5] 1

)
, b =

(
1

[1, 3]

)
.

2

4

−2

2 4−2−4−6 x1

x2

0

15 / 33

Application: Least Square Solutions

Least Square Solution

Let A ∈ IRm×n, b ∈ IRm and m > n. The least square solution of

Ax = b,

is defined as the optimal solution of

min
x∈Rn

‖Ax − b‖2,

or, alternatively as the solution to

ATAx = ATb.

Interval Least Square Solution Set

Let A ∈ IRm×n and b ∈ IRm and m > n. The LSQ solution set is defined

ΣLSQ := {x ∈ Rn : ∃A ∈ A∃b ∈ b : ATAx = ATb}.

Proposition

ΣLSQ is contained in the solution set to ATAx = ATb.
16 / 33

Application: Least Square Solutions

Proposition

ΣLSQ is contained in the solution set to
(
0 AT

A Im

)(
x
y

)
=

(
0
b

)
. (1)

Proof.

Let A ∈ A, b ∈ b. If x , y solve

AT y = 0, Ax + y = b,

then

0 = AT (b − Ax) = ATb − ATAx ,

and vice versa.

Proposition

Relaxing the dependencies, the solution set to ATAx = ATb is contained
in the solution set to (1).

17 / 33

Next Section

1 Regularity of Interval Matrices

2 Parametric Interval Systems

3 AE Solution Set

4 Algorithmic Issues

18 / 33

Tolerable Solutions

Motivation

So far, existentially quantified interval systems

Σ := {x ∈ Rn : ∃A ∈ A ∃b ∈ b : Ax = b}.
Now, incorporate universal quantification as well!

Definition (Tolerable Solutions)

A vector x ∈ Rn is a tolerable solution to Ax = b if for each A ∈ A there
is b ∈ b such that Ax = b.

In other words,

∀A ∈ A ∃b ∈ b : Ax = b.

Equivalent Characterizations

Ax ⊆ b,

|Acx − bc | ≤ −A∆|x |+ b∆.

19 / 33

Tolerable Solutions

Theorem (Rohn, 1986)

A vector x ∈ Rn is a tolerable solution if and only if x = x1 − x2, where

Ax1 − Ax2 ≤ b, Ax1 − Ax2 ≥ b, x1, x2 ≥ 0.

Proof.

“⇐” Let A ∈ A. Then

Ax = Ax1 − Ax2 ≤ Ax1 − Ax2 ≤ b,

Ax = Ax1 − Ax2 ≥ Ax1 − Ax2 ≥ b

Thus, Ax ∈ b and Ax = b for some b ∈ b.
“⇒” Let x ∈ Rn be a tolerable solution. Define x1 := max{x , 0} and
x2 := max{−x , 0} the positive and negative part of x , respectively. Then
x = x1 − x2, |x | = x1 + x2, and |Acx − bc | ≤ −A∆|x |+ b∆ draws

Ac(x1 − x2)− bc ≤ −A∆(x1 + x2) + b∆,

−Ac(x1 − x2) + bc ≤ −A∆(x1 + x2) + b∆.

20 / 33

Tolerable Solutions – Application

Example (Leontief’s Input–Output Model of Economics)

economy with n sectors (e.g., agriculture, industry, transportation,
etc.),

sector i produces a single commodity of amount xi ,

production of each unit of the jth commodity will require aij
(amount) of the ith commodity

di the final demand in sector i .

Now the model draws

xi = ai1x1 + · · ·+ ainxn + di .

or, in a matrix form

x = Ax + d .

The solution x = (In − A)−1d =
∑∞

k=0 A
kd is nonnegative if ρ(A) < 1.

Question: Exists x such that for any A ∈ A there is d ∈ d: (In − A)x = d?

21 / 33

AE Solutions

Quantified system Ax = b

each interval parameter aij and bi is quantified by ∀ or ∃
the universally quantified parameters are denoted by A∀, b∀,

the existentially quantified parameters are denoted by A∃, b∃

the system reads (A∀ + A∃)x = b∀ + b∃

Definition (AE Solution Set)

ΣAE :=
{
x ∈ Rn :

∀A∀ ∈ A∀ ∀b∀ ∈ b∀ ∃A∃ ∈ A∃ ∃b∃ ∈ b∃ : (A∀ + A∃)x = b∀ + b∃
}
.

22 / 33

AE Solutions

Theorem (Shary, 1995)

ΣAE =
{
x ∈ Rn : A∀x − b∀ ⊆ b∃ − A∃x

}
. (2)

Proof.

ΣAE =
{
x ∈ Rn : ∀A∀ ∈ A∀ ∀b∀ ∈ b∀ ∃A∃ ∈ A∃ ∃b∃ ∈ b∃ : A∀x − b∀ = b∃ − A∃x

}

=
{
x ∈ Rn : ∀A∀ ∈ A∀ ∀b∀ ∈ b∀ : A∀x − b∀ ∈ b∃ − A∃x

}

=
{
x ∈ Rn : A∀x − b∀ ⊆ b∃ − A∃x

}
.

Theorem (Rohn, 1996)

ΣAE =
{
x ∈ Rn : |Acx − bc | ≤

(
(A∃)∆ − (A∀)∆

)
|x |+ (b∃)∆ − (b∀)∆

}
.

Proof.

Using (2) and the fact p ⊆ q ⇔ |pc − qc | ≤ p∆ − q∆, we get

|
(
A∀x − b∀)c −

(
b∃ − A∃x

)
c | ≤

(
A∃x − b∃

)∆ −
(
b∀ − A∀x

)∆

= (A∃)∆|x |+ b∃∆ − (A∀)∆x | − b∀∆.
23 / 33

Exercises for YOU

Strong solution of Ax = b

Characterize when x ∈ Rn solves Ax = b for every A ∈ A and b ∈ b.

24 / 33

Software

webComputing (by E. Popova)

interactive free visualization at
http://cose.math.bas.bg/webComputing/

parametric solution set

AE solution set

3D standard solution set

Parametric interval systems

Mathematica package (Popova, 2004)

C++ library C-XCS implementation (Popova and Krämer, 2007;
Zimmer, Krämer and Popova, 2012)

25 / 33

References

M. Fiedler, J. Nedoma, J. Raḿık, J. Rohn, and K. Zimmermann.
Linear optimization problems with inexact data.
Springer, New York, 2006.

M. Hlad́ık.
Enclosures for the solution set of parametric interval linear systems.
Int. J. Appl. Math. Comput. Sci., 22(3):561–574, 2012.

E. D. Popova.
Explicit description of AE solution sets for parametric linear systems.
SIAM J. Matrix Anal. Appl., 33(4):1172–1189, 2012.

J. Rohn.
Forty necessary and sufficient conditions for regularity of interval matrices: A
survey.
Electron. J. Linear Algebra, 18:500–512, 2009.

S. M. Rump.
Verification methods: Rigorous results using floating-point arithmetic.
Acta Numer., 19:287–449, 2010.

26 / 33

Next Section

1 Regularity of Interval Matrices

2 Parametric Interval Systems

3 AE Solution Set

4 Algorithmic Issues

27 / 33

Algorithmic Issues: Various solution concepts

Various solution concepts of Ax = b

Traditional solution concept: ∃x0∃A∃b-concept
Solvability ⇔ (∃x0 ∈ Rn)(∃A ∈ A)(∃b ∈ b) Ax0 = b
We proved: checking solvability is NP-complete
But we know: checking nonnegative solvability — polynomial time

Strong solvability: ∀A∀b∃x0-concept
Strong solvability ⇔ (∀A ∈ A)(∀b ∈ b)(∃x0 ∈ Rn) Ax0 = b
Complexity: coNP-complete
Remains coNP-complete even if we restrict to x0 ≥ 0

Strong solution: ∃x0∀A∀b-concept
x0 ∈ Rn is a strong solution if (∀A ∈ A)(∀b ∈ b) Ax0 = b
Existence of a strong solution ⇔ (∃x0 ∈ Rn)(∀A ∈ A)(∀b ∈ b) Ax0 = b
Complexity of testing existence: polynomial time
Remark. Strong solutions exist very rarely; for example, a necessary
condition for existence is b∆ = 0 (Exercise)
Caution. In case of linear inequalities, the situation is different: a
system Ax ≤ b is strongly solvable iff it has a strong solution. But
nothing similar holds for equations...

28 / 33

AlgoIss: Various solution concepts (contd.)

Various solution concepts of Ax = b

Tolerable solution: ∃x0∀A∃b-concept
Existence of a tolerable solution ⇔
(∃x0 ∈ Rn)(∀A ∈ A)(∃b ∈ b) Ax0 = b.
Complexity: polynomial time

Control solution: ∃x0∀b∃A-concept
Existence of a control solution ⇔
(∃x0 ∈ Rn)(∀b ∈ b)(∃A ∈ A) Ax0 = b
Complexity: NP-complete

AE-solution: ∃x0∀A∀∀b∀∃A∃∃b∃-concept
Existence of AE-solution ⇔ (∃x0 ∈ Rn)(∀A∀ ∈ A∀)(∀b∀ ∈ b∀)(∃A∃ ∈
A∃)(∃b∃ ∈ b∃) (A∀ + A∃)x0 = b∀ + b∃

Complexity: NP-complete
To recall: 2n-algorithm — orthant decomposition by Rohn’s Theorem

29 / 33

AlgoIss: Various solution concepts

A natural generalization

One can imagine a natural generalization to any level of quantifier
complexity, e.g.

Σk -solution: ∃∀∃ · · · with k − 1 quantifier alternations,
Πk-solution: ∀∃∀ · · · with k − 1 quantifier alternations.

Study of formulae with Σk - and Πk -prefixes is popular in logic (recall
e.g. the Arithmetical Hierarchy) as well as in Complexity Theory
(recall e.g. the Polynomial Time Hierarchy).

About Σk - and Πk -solutions we can say only that checking existence
is recursive: can be decided (in double-exponential time) via Tarski’s
Quantifier Elimination Method

But possibly more could be said and more efficient methods might
exist...

If logic and complexity theory “like” building hierarchies based on
quantifier complexity, why couldn’t we try something similar in
interval analysis?

30 / 33

AlgoIss: Regularity

Let E denote the all-one matrix.

Proposition

The following statements are equivalent:

(a) Rohn’s system |Ax | ≤ e, ‖x‖1 ≥ 1 is solvable.

(b) Interval system [A− E ,A + E]x = 0, [−eT , eT]x = 1 has a solution.

(c) [A− E ,A+ E] is singular (= contains a singular matrix).

Corollary

(a) Checking regularity of an interval matrix is a coNP-complete problem.

(b) Checking existence of a solution of an interval system Ax = b is an
NP-complete problem. (This is another proof of a previously proved

statement.)

(c) Checking existence of a control solution of an interval system
Ax = b is an NP-complete problem.

31 / 33

AlgoIss: Regularity (contd.)

Proof of Proposition

Step 1. Singularity of [A− E ,A+ E] ⇔ solvability of
[A− E ,A+ E]x = 0, [−eT , eT]x = 1.

A′ ∈ [A− E ,A+ E] is singular ⇔ A′x = 0, ‖x‖1 = 1 is solvable ⇔
A′x = 0, sgn(x)T x = 1 is solvable. Now A′ ∈ [A− E ,A+ E],
sgn(x)T ∈ [−eT , eT].

A′x = 0, cT x = 1 is solvable for A′ ∈ [A− E ,A + E], cT ∈ [−eT , eT]
⇒ there is a solution x 6= 0 ⇒ A′ is singular.

Step 2. Solvability of |Ax | ≤ e, ‖x‖1 ≥ 1 ⇔ solvability of
[A− E ,A+ E]x = 0, [−eT , eT]x = 1.

x solves |Ax | ≤ e, ‖x‖1 ≥ 1 iff x ′ := x
‖x‖1 solves

∣∣∣∣
(
A

0T

)
x −

(
0

1

)∣∣∣∣ ≤
(
E

eT

)
|x |.

The last inequality is Oettli-Prager expression for the solution set of
[A− E ,A+ E]x = 0, [−eT , eT]x = 1.

32 / 33

AlgoIss: Regularity (contd.)

Exercise

Prove in detail that checking regularity of a given interval matrix is indeed
in coNP.

33 / 33

Interval linear inequalities
Interval Programming 4

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 17

Outline

1 Software Presentation

2 Interval Linear Inequalities – Solution Set

3 Algorithmic Issues

2 / 17

Next Section

1 Software Presentation

2 Interval Linear Inequalities – Solution Set

3 Algorithmic Issues

3 / 17

Software Presentation

webComputing (E. Popova)
visualization of solution sets
http://cose.math.bas.bg/webComputing/

Intlab (S. M. Rump)
interval library for Matlab
http://www.ti3.tu-harburg.de/rump/intlab/

4 / 17

Next Section

1 Software Presentation

2 Interval Linear Inequalities – Solution Set

3 Algorithmic Issues

5 / 17

Solution Set

Interval Linear Inequalities

Let A ∈ IRm×n and b ∈ IRm. The family of systems

Ax ≤ b, A ∈ A, b ∈ b.

is called interval linear inequalities and abbreviated as Ax ≤ b.

Solution set

The solution set is defined

Σ := {x ∈ Rn : ∃A ∈ A∃b ∈ b : Ax ≤ b}.

Theorem (Gerlach, 1981)

A vector x ∈ Rn is a solution of Ax ≤ b if and only if

Acx ≤ A∆|x |+ b.

Corollary

An x ∈ Rn is a solution of Ax ≤ b, x ≥ 0 if and only if Ax ≤ b, x ≥ 0.

6 / 17

Proof of Gerlach’s Theorem

Theorem (Gerlach, 1981)

A vector x ∈ Rn is a solution of Ax ≤ b if and only if

Acx ≤ A∆|x |+ b. (1)

Proof.

If x is a solution of Ax ≤ b, then Ax ≤ b for some A ∈ A and b ∈ b, and
one has

Acx ≤ Acx + b − Ax = (Ac − A)x + b ≤ |(Ac − A)||x |+ b ≤ A∆|x |+ b.

Conversely, let x satisfy (1). Set z := sgn(x), so |x | = diag(z)x . Thus (1)
takes the form of

Acx ≤ A∆ diag(z)x + b,

or
(Ac − A∆ diag(z))x ≤ b.

Hence x fulfills Ax ≤ b for b := b and A := Ac − A∆ diag(z).
7 / 17

Example of the Solution Set

Example (An interval polyhedron)

5

10

−5

−10

5 10−5−10 0 x1

x2

0




−[2, 5] −[7, 11]
[1, 13] −[4, 6]
[5, 8] [−2, 1]
−[1, 4] [5, 9]
−[5, 6] −[0, 4]


 x ≤




[61, 63]
[19, 20]
[15, 22]
[24, 25]
[26, 37]




union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

8 / 17

Strong Solution

Strong Solution

A vector x ∈ Rn is a strong solution to Ax ≤ b if Ax ≤ b for every A ∈ A
and b ∈ b.

Theorem (Rohn & Kreslová, 1994)

A vector x ∈ Rn is a strong solution iff there are x1, x2 ∈ Rn such that

x = x1 − x2, Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0. (2)

Theorem (Machost, 1970)

A vector x ∈ Rn is a strong solution Ax ≤ b, x ≥ 0 iff it solves

Ax ≤ b, x ≥ 0.

Proof.

One direction is trivial.
Conversely, if x∗ solves Ax ≤ b, x ≥ 0, then for each A ∈ A and b ∈ b,

Ax∗ ≤ Ax∗ ≤ b ≤ b.
9 / 17

Strong Solution

Theorem (Rohn & Kreslová, 1994)

An interval system Ax ≤ b (x ≥ 0) has a strong solution iff Ax ≤ b is
feasible for each A ∈ A and b ∈ b.

Proof.

One direction obvious, the latter not obvious.

Remark

The statement is surprising. Analogy for interval equations does not hold,
for example

x + y = [1, 2], x − y = [2, 3]

is feasible for each realization, but there is no common solution.

10 / 17

Exercises for YOU

What are topological properties of the solution set to Ax ≤ b?

1 Can Σ be disconnected?

2 Can Σ have both bounded and unbounded connectivity components?

3 Can Σ have several bounded connectivity components?

11 / 17

Summary of Solution Set Descriptions

solution type description

solution of Ax = b |Acx − bc | ≤ A∆|x |+ b∆

strong solution of Ax = b Acx − bc = A∆|x | = b∆ = 0

tolerance solution of Ax = b |Acx − bc | ≤ −A∆|x |+ b∆

solution of Ax ≤ b Acx − bc ≤ A∆|x |+ b∆

strong solution of Ax ≤ b Acx − bc ≤ −A∆|x | − b∆

12 / 17

References

M. Fiedler, J. Nedoma, J. Raḿık, J. Rohn, and K. Zimmermann.
Linear optimization problems with inexact data.
Springer, New York, 2006.

W. Gerlach.
Zur Lösung linearer Ungleichungssysteme bei Störung der rechten Seite und
der Koeffizientenmatrix.
Math. Operationsforsch. Stat., Ser. Optimization, 12:41–43, 1981.

M. Hlad́ık.
Weak and strong solvability of interval linear systems of equations and
inequalities.
Linear Algebra Appl., 438(11):4156–4165, 2013.

B. Machost.
Numerische Behandlung des Simplexverfahrens mit intervallanalytischen
Methoden.
Technical Report 30, Berichte der Gesellschaft für Mathematik und
Datenverarbeitung, 54 pages, Bonn, 1970.

J. Rohn and J. Kreslová.
Linear interval inequalities.
Linear Multilinear Algebra, 38(1-2):79–82, 1994.

13 / 17

Next Section

1 Software Presentation

2 Interval Linear Inequalities – Solution Set

3 Algorithmic Issues

14 / 17

Algorithmic Issues: Inequalities

Polynomial-time cases

Nonnegative solvability. By Gerlach: the system Ax ≤ b, x ≥ 0 is
solvable ⇔ the system Ax ≤ b, x ≥ 0 is solvable (LP).

Strong nonnegative solvability (and existence of a strong
nonnegative solution). Check Ax ≤ b, x ≥ 0 (LP).

Strong solvability (and existence of a strong solution). The
system Ax ≤ b is strongly solvable ⇔ it has a strong solution x0 ⇔
(∃x1, x2 ≥ 0) s.t. x0 = x1 − x2 and Ax1 − Ax2 ≤ b (LP).

Theorem

Checking solvability of Ax ≤ b is NP-complete.

15 / 17

AlgoIss: NP-completeness of solvability

Proof.

Rohn’s system |Ax | ≤ e, ‖x‖1 ≥ 1 can be rewritten as



A
−A
0T


 x −




0
0
eT


 |x | ≤




e
e
−1




and this is Gerlach’s inequality for



[A,A]
[−A,−A]
[−eT , eT]


 x ≤




e
e
−1


 .

Remark. Observe that there is no “dependency problem” even if A occurs
in both the first and the second inequality.

Remark. Observe that the problem is NP-complete even if b is crisp and A
has intervals in one row only.

16 / 17

AlgoIss: Comparison

Ax = b Ax ≤ b

solvability x ∈ Rn NP-complete NP-complete

solvability x ≥ 0 poly-time poly-time

strong solvability x ∈ Rn coNP-complete poly-time

strong solvability x ≥ 0 coNP-complete poly-time

To recall: strong solvability means

(∀A ∈ A)(∀b ∈ b)(∃x ∈ Rn) Ax = b (Ax ≤ b).

17 / 17

Interval linear programming
Interval Programming 5

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 35

Outline

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

2 / 35

Next Section

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

3 / 35

Introduction

Linear programming – three basic forms

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c, in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

The three forms are not transformable between each other!

Goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.

4 / 35

Complexity of Basic Problems

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial

strong
unboundedness

co-NP-hard polynomial polynomial

weak
unboundedness

suff. / necessary
conditions only

suff. / necessary
conditions only

polynomial

strong
optimality co-NP-hard co-NP-hard polynomial

weak optimality
suff. / necessary
conditions only

suff. / necessary
conditions only

suff. / necessary
conditions only

optimal value
range

f polynomial
f NP-hard

f NP-hard
f polynomial

polynomial

5 / 35

Next Section

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

6 / 35

Optimal Value Range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.

Theorem (Rohn, 2006)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
p∈{±1}m

f (Ac − diag(p)A∆, bc + diag(p)b∆, c).

7 / 35

Optimal Value Range

Algorithm (Optimal value range [f , f])

1 Compute

f := inf (cc)T x − (c∆)T |x | subject to x ∈ M,

where M is the primal solution set.

2 If f = ∞, then set f := ∞ and stop.

3 Compute

ϕ := sup (bc)T y + (b∆)T |y | subject to y ∈ N ,

where N is the dual solution set.

4 If ϕ = ∞, then set f := ∞ and stop.

5 If the primal problem is strongly feasible, then set f := ϕ;
otherwise set f := ∞.

8 / 35

Next Section

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

9 / 35

Optimal Solution Set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c
S(A, b, c).

Goal

Find a tight enclosure to S.

Characterization

By duality theory, we have that x ∈ S if and only if there is some y ∈ Rm,
A ∈ A, b ∈ b, and c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c , cT x = bT y ,

where A ∈ A, b ∈ b, c ∈ c.
10 / 35

Next Section

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

11 / 35

Basis Stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.

(Otherwise each realization has at least one optimal solution in this set.)

12 / 35

Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C1

C1 says that AB is regular;

co-NP-hard problem;

Beeck’s sufficient condition: ρ
(
|((Ac)B)

−1|(A∆)B
)
< 1.

13 / 35

Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C2

C2 says that the solution set to ABxB = b lies in Rn
+;

sufficient condition: check of some enclosure to ABxB = b.

14 / 35

Basis Stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C3

C2 says that AT
Ny ≤ cN , AT

B y = cB is strongly feasible;

co-NP-hard problem;

sufficient condition:
(AT

N)y ≤ cN , where y is an enclosure to AT
B y = cB .

15 / 35

Basis Stability

Theorem

Condition C3 holds true if and only if for each q ∈ {±1}m the polyhedral
set described by

((Ac)TB − (A∆)TB diag(q))y ≤ cB ,

−((Ac)TB + (A∆)TB diag(q))y ≤ −cB ,

diag(q)y ≥ 0

lies inside the polyhedral set

((Ac)TN + (A∆)TN diag(q))y ≤ cN , diag(q)y ≥ 0.

16 / 35

Example

Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)
x ≤

(
[15, 16]
[18, 19]
[6, 7]

)
, x ≥ 0.

1

2

3

4

1 2 3 4 50 x1

x2 union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

set of optimal
solutions in dotted
area

17 / 35

Basis Stability – Interval Right-Hand Side

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0 for each b ∈ b.

C3. cTN − cTB A−1
B AN ≥ 0T .

Condition C1

C1 and C3 are trivial

C2 is simplified to

A−1
B b ≥ 0,

which is easily verified by interval arithmetic

overall complexity: polynomial

18 / 35

Basis Stability – Interval Objective Function

Interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T for each c ∈ c

Condition C1

C1 and C2 are trivial

C3 is simplified to

AT
Ny ≤ cN , AT

B y = cB

or,

(AT
NA

−T
B)cB ≤ cN .

overall complexity: polynomial

19 / 35

Next Section

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

20 / 35

Applications

Real-Life Applications

Transportation problems with uncertain demands, suppliers, and/or
costs.

Networks flows with uncertain capacities.

Diet problems with uncertain amounts of nutrients in foods.

Portfolio selection with uncertain rewards.

Matrix games with uncertain payoffs.

Technical Applications

Tool for global optimization.

Measure of sensitivity of linear programs.

21 / 35

Applications – Diet Problem

Example (Stigler’s Nutrition Model)

http://www.gams.com/modlib/libhtml/diet.htm.

n = 20 different types of food,

m = 9 nutritional demands,

aij is the the amount of nutrient j contained in one unit of food i ,

bi is the required minimal amount of nutrient j ,

cj is the price per unit of food j ,

minimize the overall cost

The model reads

min cT x subject to Ax ≥ b, x ≥ 0.

The entries aij are not stable!

22 / 35

Applications – Diet Problem

Example (Stigler’s Nutrition Model (cont.))

Nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c
(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg)

wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106
cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4

peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525

porkroast 4.4 249 .3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209

greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257

limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navybeans 26.9 1691 11.4 792 38.4 24.6 217

23 / 35

Applications – Diet Problem

Example (Stigler’s Nutrition Model (cont.))

If the entries aij are known with 10% accuracy, then

the problem is not basis stable

the minimal cost ranges in [0.09878, 0.12074],

the interval enclosure of the solution set is

[0, 0.0734], [0, 0.0438], [0, 0.0576], [0, 0.0283], [0, 0.0535], [0, 0.0315], [0, 0.0339],

[0, 0.0300], [0, 0.0246], [0, 0.0337], [0, 0.0358], [0, 0.0387], [0, 0.0396], [0, 0.0429],

[0, 0.0370], [0, 0.0443], [0, 0.0290], [0, 0.0330], [0, 0.0472], [0, 0.1057].

If the entries aij are known with 1% accuracy, then

the problem is basis stable

the minimal cost ranges in [0.10758, 0.10976],

the interval hull of the solution set is

x1 = [0.0282, 0.0309], x8 = [0.0007, 0.0031], x12 = [0.0110, 0.0114],

x15 = [0.0047, 0.0053], x20 = [0.0600, 0.0621].

24 / 35

Research Directions

Research Directions

Special cases of linear programs.

Generalizations to nonlinear, multiobjective and other programs.

Considering simple dependencies (H., Č., 2014).

Approximation of NP-hard optimal value bounds (H., 2014)

Other concepts of optimality; similarly to AE-solutions.
(W. Li, J. Luo et al., 2013, 2014)

25 / 35

Open problems

Open Problems

A sufficient and necessary condition for weak unboundedness, strong
boundedness and weak optimality.

A method for determining the image of the optimal value function.

A sufficient and necessary condition for duality gap to be zero for
each realization.

A method to test if a basis B is optimal for some realization.

Tight enclosure to the optimal solution set.

26 / 35

References

M. Fiedler, J. Nedoma, J. Raḿık, J. Rohn, and K. Zimmermann.
Linear optimization problems with inexact data.
Springer, New York, 2006.

M. Hlad́ık.
Interval linear programming: A survey.
In Z. A. Mann, editor, Linear Programming – New Frontiers in Theory and
Applications, chapter 2, pages 85–120. Nova Science Publishers, 2012.

M. Hlad́ık.
Weak and strong solvability of interval linear systems of equations and
inequalities.
Linear Algebra Appl., 438(11):4156–4165, 2013.

M. Hlad́ık.
How to determine basis stability in interval linear programming.
Optim. Lett., 8(1):375–389, 2014.

W. Li, J. Luo and C. Deng.
Necessary and sufficient conditions of some strong optimal solutions to the
interval linear programming.
Linear Algebra Appl., 439(10):3241–3255, 2013.

27 / 35

Next Section

1 Introduction to Interval linear programming

2 Optimal Value Range

3 Optimal Solution Set

4 Basis Stability

5 Applications

6 Algorithmic Issues

28 / 35

AlgoIss: Optimal Value Range for the form Ax = b, x ≥ 0

To recall: By correctness of the Optimal Value Range algorithm, we have
the following form of IntLP-duality:

Lemma

If f = sup(A,b,c)∈(A,b,c) inf{cT x : ATx = b, x ≥ 0} is finite, then

f = ϕ := sup{(bc)T y + (b∆)T |y | : y ∈ N},
where N =

⋃
(A,b,c)∈(A,b,c){y : Ay ≤ c} = {y : Acy − A∆|y | ≤ c} is the

dual solution set.

An interesting special case with crisp AT = (AT ,−AT), c = (eT , eT) and
interval b = [−e, e]:

Corollary

If f = supb∈[−e,e] inf{eT x1 + eT x2 : AT (x1 − x2) = b, x1 ≥ 0, x2 ≥ 0} is
finite, then

f = max{eT |y | : −e ≤ Ay ≤ e} (= max{‖y‖1 : −e ≤ Ay ≤ e}).

29 / 35

AlgoIss: Optimal Value Range for the form Ax = b, x ≥ 0
We have almost proved:

Theorem

Computation of f is NP-hard for the form Ax = b, x ≥ 0.

Proof.

The following form of Rohn’s generic problem is NP-complete: given a regular
matrix A, decide whether the system −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 is solvable. [Singular
matrices can be easily excluded: if A is singular, then Ax = 0, ‖x‖1 ≥ 1 has a
solution, and so does −e ≤ Ax ≤ e, ‖x‖1 ≥ 1.]

Let a regular matrix A be given and consider the problem of computing f for

min eT x1 + eT x2 : AT (x1 − x2) = [−e, e], x1 ≥ 0, x2 ≥ 0.

The dual feasible set N = {y : −e ≤ Ay ≤ e} is nonempty (0 ∈ N) and bounded
(since A is regular); moreover, |b| ≤ e is also bounded. Thus the dual problem is
feasible and bounded for every b ∈ [−e, e], and so is the primal problem by
LP-duality. Thus f is finite and

f = max{‖y‖1 : −e ≤ Ay ≤ e}.

Now f ≥ 1 iff −e ≤ Ax ≤ e, ‖x‖1 ≥ 1 is solvable.
30 / 35

AlgoIss: Comments

Comments

To recall: f is computable in polynomial time by the LP

min cT x s.t. Ax ≤ b,Ax ≥ b, x ≥ 0.

The NP-hardness result shows that the 2n-algorithm based on orthant
decomposition

f = max
s∈{±1}

min{cT x : (Ac − TsA
∆)x = bc + Tsb

∆, x ≥ 0}

with Ts = diag(s) is the “best possible”.

Exercise

Prove analogous results for the forms

Ax ≤ b: f poly-time, f NP-hard;
Ax ≤ b, x ≥ 0: both f , f poly-time.

Note that duality plays role here: the forms Ax ≤ b and
Ax = b, x ≥ 0 are dual to each other and complexity results are
“complementary”. The form Ax ≤ b, x ≥ 0 is “self-dual”.

31 / 35

AlgoIss: Basis stability

Linear regression

Consider the linear regression model

y = Xβ + ε,

where columns of X are regressors and y is a dependent variable.
Often we use minimum norm estimators

β̂ = argminβ‖y − Xβ‖2 = (XTX)−1XT y (least squares),

β̂ = argminβ‖y − Xβ‖1 (least absolute deviations),

β̂ = argminβ‖y − Xβ‖∞ (Chebyshev approximation).

The ‖ · ‖1 and ‖ · ‖∞ problems can be written as linear programs:

min
r ,β

eT r s.t. Xβ − y ≤ r , −Xβ + y ≤ r , r ≥ 0.

min
t,β

t s.t. Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0.

We will consider the latter problem with interval data (X, y):

min
t,β

t s.t. Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0.

32 / 35

AlgoIss: Basis stability (contd.)

We are given interval data (X, y) and we are to solve

min
t,β

t s.t. Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0. (1)

Illustration

Basis stability = robustness of classification:

Let Class 1 be defined by C1 = {i : yi ≥ Xi ,:β̂}.
Let Class 2 be defined by C2 = {i : yi ≤ Xi ,:β̂}.
Basis stability: the same classification (i.e. C1 = C2) for every
(X , y) ∈ (X, y).

Theorem

Testing basis stability of the interval LP (1) is a coNP-complete problem.

Remark. The IntLP (1) is a fake IntLP since it suffers from
dependencies...

33 / 35

AlgoIss: Basis stability (contd.)

Proof

We will show that testing regularity of a given interval matrix A is
reducible to testing basis stability of

min
t,β

t s.t. Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0. (2)

Let A be given and consider (2) with (X, y) = (A, [−e, e]).

Step 1. Regularity ⇒ Basis stability. Let X = A be regular. For
every X ∈ X, β = X−1y , t = 0 is the optimal solution. Thus, all
2n + 1 inequalities of the system

Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0

hold as equations. Thus the basis {1, . . . , n, 2n + 1} is optimal.

Step 2. Singularity ⇒ Basis instability. Let X0 ∈ X = A be singular.
We will show two different choices of y ∈ [−e, e] leading to two
different optimal bases.

34 / 35

AlgoIss: Basis stability (contd.)

Proof (contd.)

To recall: we work with mint,β t s.t. Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0.

We want to prove Step 2: Singularity ⇒ Basis instability. Let X0 ∈ X = A
be singular. We will show two different choices of y ∈ [−e, e] leading to
two different optimal bases.

Choice 1: Let y0 ∈ [−e, e] s.t. y0 is linearly independent of columns of X0. (By
singularity of X0, such a choice is possible.) Any optimal solution of

X0β − y0 ≤ te, −X0β + y0 ≤ te, t ≥ 0

must have t > 0 (since t = 0 implies X0β = y0 and y0 is dependent on columns of
X0). Thus an optimal basis does not contain the inequality t ≥ 0 (= index 2n+ 1)
since always t > 0.

Choice 2: Let y0 = 0. Then β = 0, t = 0 is an optimal solution. Thus every
optimum solution has t = 0 and we must choose an optimal basis containing t = 0
(= index 2n + 1).

35 / 35

Eigenvalues and positive definiteness of interval matrices
Interval Programming 6

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 18

Outline

1 Eigenvalues of Symmetric Interval Matrices

2 Positive (Semi-)Definiteness

3 Application: Convexity Testing

2 / 18

Next Section

1 Eigenvalues of Symmetric Interval Matrices

2 Positive (Semi-)Definiteness

3 Application: Convexity Testing

3 / 18

Eigenvalues of Symmetric Interval Matrices

A Symmetric Interval Matrix

AS := {A ∈ A : A = AT}.
Without loss of generality assume that A = AT , A = A

T
, and AS 6= ∅.

Eigenvalues of a Symmetric Interval Matrix

Eigenvalues of a symmetric A ∈ Rn×n: λ1(A) ≥ · · · ≥ λn(A).
Eigenvalue sets of AS :

λi (A
S) :=

{
λi (A) : A ∈ AS

}
, i = 1, . . . , n.

Theorem

Checking whether 0 ∈ λi (A
S) for some i = 1, . . . , n is NP-hard.

Proof.

A is singular iff MS :=

(
0 A

AT 0

)S

is singular (has a zero eigenvalue).

4 / 18

Eigenvalues – An Example

Example

Let

A ∈ A =



[1, 2] 0 0
0 [7, 8] 0
0 0 [4, 10]




What are the eigenvalue sets?
We have λ1(A

S) = [7, 10], λ2(A
S) = [4, 8] and λ3(A

S) = [1, 2].

1 2 3 4 5 6 7 8 9 10 ℜλ1(A) λ2(A) λ3(A)

Eigenvalue sets are compact intervals. They may intersect or equal.

5 / 18

Eigenvalues – Some Exact Bounds

Theorem (Hertz, 1992)

We have

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

λn(A
S) = min

z∈{±1}n
λn(A

c − diag(z)A∆ diag(z)).

Proof.

“Upper bound.” By contradiction suppose that there is A ∈ AS such that

λ1(A) > max
z∈{±1}n

λ1(Az),
[
where Az ≡ Ac + diag(z)A∆ diag(z)

]

Thus Ax = λ1(A)x for some x with ‖x‖2 = 1.
Put z∗ := sgn(x), and by the Rayleigh–Ritz Theorem we have

λ1(A) = xTAx ≤ xTAz∗x

≤ max
y :‖y‖2=1

yTAz∗y = λ1(Az∗).

6 / 18

Eigenvalues – Some Other Exact Bounds

Theorem

λ1(A
S) and λn(A

S) are polynomially computable by semidefinite
programming.

Proof.

We have

λn(A
S) = maxα subject to A− αIn is positive semidefinite, A ∈ AS .

Consider a block diagonal matrix M(A, α) with blocks

A− αIn, aij − aij , aij − aij , i ≤ j .

Then the optimization problem reads

λn(A
S) = maxα subject to M(A, α) is positive semidefinite.

7 / 18

Eigenvalues – Enclosures

Theorem

We have

λi(A
S) ⊆ [λi (A

c)− ρ(A∆), λi (A
c) + ρ(A∆)], i = 1, . . . , n.

Proof.

Recall for any A,B ∈ Rn×n,

|A| ≤ B ⇒ ρ(A) ≤ ρ(|A|) ≤ ρ(B),

and for A,B symmetric (Weyl’s Theorem)

λi (A) + λn(B) ≤ λi (A+ B) ≤ λi(A) + λ1(B), i = 1, . . . , n.

Let A ∈ AS , so |A − Ac | ≤ A∆. Then

λi (A) = λi (A
c + (A− Ac)) ≤ λi(A

c) + λ1(A− Ac)

≤ λi (A
c) + ρ(|A − Ac |) ≤ λi (A

c) + ρ(A∆).

Similarly for the lower bound.

8 / 18

Eigenvalues – Easy Cases

Theorem
1 If Ac is essentially non-negative, i.e., Ac

ij ≥ 0 ∀i 6= j , then

λ1(A
S) = λ1(A).

2 If A∆ is diagonal, then

λ1(A
S) = λ1(A), λn(A

S) = λn(A).

Proof.

1 For the sake of simplicity suppose Ac ≥ 0. Then ∀A ∈ AS we have
|A| ≤ A, whence

λ1(A) = ρ(A) ≤ ρ(A) = λ1(A).

2 By Hertz’s theorem,

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

= λ1(A
c + A∆) = λ1(A).

9 / 18

Next Section

1 Eigenvalues of Symmetric Interval Matrices

2 Positive (Semi-)Definiteness

3 Application: Convexity Testing

10 / 18

Positive Semidefiniteness

AS is positive semidefinite if every A ∈ AS is positive semidefinite.

Theorem

The following are equivalent

1 AS is positive semidefinite,

2 Az ≡ Ac − diag(z)A∆ diag(z) is positive semidefinite ∀z ∈ {±1}n,
3 xTAcx − |x |TA∆|x | ≥ 0 for each x ∈ Rn.

Proof.

“(1) ⇒ (2)” Obvious from Az ∈ AS .
“(2) ⇒ (3)” Let x ∈ Rn and put z := sgn(x). Now,

xTAcx − |x |TA∆|x | = xTAcx − xT diag(z)A∆ diag(z)x = xTAzx ≥ 0.

“(3) ⇒ (1)” Let A ∈ AS and x ∈ Rn. Now,

xTAx = xTAcx + xT (A − Ac)x ≥ xTAcx − |xT (A− Ac)x |
≥ xTAcx − |x |TA∆|x | ≥ 0.

11 / 18

Positive Definiteness

AS is positive definite if every A ∈ AS is positive definite.

Theorem

The following are equivalent

1 AS is positive definite,

2 Az ≡ Ac − diag(z)A∆ diag(z) is positive definite for each z ∈ {±1}n,
3 xTAcx − |x |TA∆|x | > 0 for each 0 6= x ∈ Rn,

4 Ac is positive definite and A is regular.

Proof.

“(1) ⇔ (2) ⇔ (3)” analogously.
“(1) ⇒ (4)” If there are A ∈ A and x 6= 0 such that Ax = 0, then

0 = xTAx = xT 1
2(A + AT)x ,

and so 1
2 (A+ AT) ∈ AS is not positive definite.

“(4) ⇒ (1)” Positive definiteness of Ac implies λi (A
c) > 0 ∀i , and

regularity of A implies λi (A
S) > 0 ∀i .

12 / 18

Complexity

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of AS is co-NP-hard.

Theorem (Rohn, 1994)

Checking positive definiteness of AS is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive semidefinite matrix in AS is a
polynomial time problem.

Proof.

There is a positive semidefinite matrix in AS iff λn(A
S) ≥ 0.

So we can check it by semidefinite programming.

13 / 18

Sufficient Conditions

Theorem

1 AS is positive semidefinite if λn(A
c) ≥ ρ(A∆).

2 AS is positive definite if λn(A
c) > ρ(A∆).

3 AS is positive definite if Ac is positive definite and
ρ(|(Ac)−1|A∆) < 1.

Proof.

1 AS is positive semidefinite iff λn(A
S) ≥ 0.

Now, employ the smallest eigenvalue set enclosure

λn(A
S) ⊆ [λn(A

c)− ρ(A∆), λn(A
c) + ρ(A∆)].

2 Analogous.

3 Use Beeck’s sufficient condition for regularity of A.

14 / 18

Next Section

1 Eigenvalues of Symmetric Interval Matrices

2 Positive (Semi-)Definiteness

3 Application: Convexity Testing

15 / 18

Application: Convexity Testing

Theorem

A function f : Rn 7→ R is convex on x ∈ IRn iff its Hessian ∇2f (x) is
positive semidefinite ∀x ∈ int x.

Corollary

A function f : Rn 7→ R is convex on x ∈ IRn if ∇2f (x) is positive
semidefinite.

16 / 18

Application: Convexity Testing

Example

Let

f (x , y , z) = x3 + 2x2y − xyz + 3yz2 + 8y2,

where x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z = [0, 1]. The Hessian of f
reads

∇2f (x , y , z) =



6x + 4y 4x − z −y
4x − z 16 −x + 6z
−y −x + 6z 6y




Evaluation the Hessian matrix by interval arithmetic results in

∇2f (x, y, z) ⊆



[16, 26] [7, 12] −[1, 2]
[7, 12] 16 [−3, 4]
− [1, 2] [−3, 4] [6, 12]




Now, both sufficient conditions for positive definiteness succeed.
Thus, we can conclude that f si convex on the interval domain.

17 / 18

References

M. Hlad́ık, D. Daney, and E. Tsigaridas.
Bounds on real eigenvalues and singular values of interval matrices.
SIAM J. Matrix Anal. Appl., 31(4):2116–2129, 2010.

M. Hlad́ık, D. Daney, and E. P. Tsigaridas.
Characterizing and approximating eigenvalue sets of symmetric interval
matrices.
Comput. Math. Appl., 62(8):3152–3163, 2011.

L. Jaulin and D. Henrion.
Contracting optimally an interval matrix without loosing any positive
semi-definite matrix is a tractable problem.
Reliab. Comput., 11(1):1–17, 2005.

J. Rohn.
Positive definiteness and stability of interval matrices.
SIAM J. Matrix Anal. Appl., 15(1):175–184, 1994.

J. Rohn.
A handbook of results on interval linear problems.
Tech. Rep. 1163, Acad. of Sci. of the Czech Republic, Prague, 2012.
http://uivtx.cs.cas.cz/~rohn/publist/!aahandbook.pdf

18 / 18

Handling constraints rigorously
Interval Programming 7

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 30

Outline

1 Nonlinear Equations

2 Interval Newton method (square system)

3 Krawczyk method (square case)

4 More general constraints

2 / 30

Next Section

1 Nonlinear Equations

2 Interval Newton method (square system)

3 Krawczyk method (square case)

4 More general constraints

3 / 30

Nonlinear Equations

Problem Statement

Find all solutions to

fj(x1, . . . , xn) = 0, j = 1, . . . , j∗

inside the box x0 ∈ IRn.

Theorem (Zhu, 2005)

For a polynomial p(x1, . . . , xn), there is no algorithm solving

p(x1, . . . , xn)
2 +

n∑

i=1

sin2(πxi) = 0.

Proof.

From Matiyasevich’s theorem solving the 10th Hilbert problem.

Remark

Using the arithmetical operations only, the problem is decidable by Tarski’s
theorem (1951).

4 / 30

Next Section

1 Nonlinear Equations

2 Interval Newton method (square system)

3 Krawczyk method (square case)

4 More general constraints

5 / 30

Interval Newton method

Classical Newton method

. . . is an iterative method

xk+1 := xk −∇f (xk)−1f (xk), k = 0, . . .

Cons

Can miss some solutions

Not verified (Are we really close to the true solution?)

Interval Newton method – Stupid Intervalization

xk+1 := xk −∇f (xk)−1f (xk), k = 0, . . .

Interval Newton method – Good Intervalization

N(xk , xk) := xk −∇f (xk)−1f (xk),

xk+1 := xk ∩ N(xk), k = 0, . . .

6 / 30

Interval Newton method

Theorem (Moore, 1966)

If x , x0 ∈ x and f (x) = 0, then x ∈ N(x0, x).

Proof.

By the Mean value theorem,

fi(x)− fi (x
0) = ∇fi(ci)

T (x − x0), ∀i = 1, . . . , n.

If x is a root, we have

−fi(x
0) = ∇fi(ci)

T (x − x0).

Define A ∈ Rn×n such that its ith row is equal to ∇fi(ci)
T . Hence

−f (x0) = A(x − x0),

from which

x = x0 − A−1f (x0) ∈ x0 −∇f (x)−1f (x0).

Notice, that this does not mean that there is c ∈ x such that

−f (x0) = ∇f (c)(x − x0).
7 / 30

Interval Newton method

Theorem (Nickel, 1971)

If ∅ 6= N(x0, x) ⊆ x, then there is a unique root in x and ∇f (x) is regular.

Proof.

“Regularity.” Easy.

“Existence.” By Brouwer’s fixed-point theorem.
[Any continuous mapping of a compact convex set into itself has a fixed point.]

“Uniqueness.” If there are two roots y1 6= y2 in x, then by the Mean value
theorem,

f (y1)− f (y2) = A(y1 − y2)

for some A ∈ ∇f (x);. Since f (y1) = f (y2) = 0, we get

A(y1 − y2) = 0

and by the nonsingularity of A, the roots are identical.

8 / 30

Interval Newton method

Practical Implementation

Instead of

N(xk , xk) := xk −∇f (xk)−1f (xk)

let N(xk , xk) be an enclosure of the solution set (with respect to x) of

∇f (x)(x − x0) = −f (x0).

Extended Interval Arithmetic

So far
[12, 15]

[−2, 3]
= (−∞,∞).

Now,

a/b := {a/b : a ∈ a, 0 6= b ∈ b}.
So,

[12, 15]

[−2, 3]
= (−∞,−6] ∪ [4,∞).

9 / 30

Interval Newton method

Example

x

y

f (x) = x3 − x + 0.2

0.5

1.0

−0.5

−1.0

0.5 1.0 1.5−0.5−1.0−1.5−2.0

In six iterations precision 10−11 (quadratic convergence).

10 / 30

Interval Newton method

Example (Moore, 1993)

y
f (x) = x2 + sin(x−3)

0

0.5

1.0

−0.5

−1.0

0.5 1.0

All 318 roots of in the interval [0.1, 1] found with accuracy 10−10.
The left most root is contained in [0.10003280626, 0.10003280628].

Summary

N(x0, x) contains all solutions in x

If x ∩ N(x0, x) = ∅, then there is no root in x

If ∅ 6= N(x0, x) ⊆ x, then there is a unique root in x

11 / 30

Next Section

1 Nonlinear Equations

2 Interval Newton method (square system)

3 Krawczyk method (square case)

4 More general constraints

12 / 30

Krawczyk method

Krawczyk operator

Let x0 ∈ x and C ∈ Rn×n, usually C ≈ ∇f (x0)−1. Then

K (x) := x0 − Cf (x0) + (In − C∇f (x))(x − x0).

Theorem

Any root of f (x) in x is included in K (x).

Proof.

If x1 is a root of f (x), then it is a fixed point of

g(x) := x − Cf (x).

By the mean value theorem,

g(x1) ∈ g(x0) +∇g(x)(x1 − x0),

whence

x1 ∈ g(x) ⊆ g(x0) +∇g(x)(x− x0)

= x0 − Cf (x0) + (In − C∇f (x))(x − x0).

13 / 30

Krawczyk method

Theorem

If K (x) ⊆ x, then there is a root in x.

Proof.

Recall

g(x) := x − Cf (x).

By the proof of the previous Theorem, K (x) ⊆ x implies

g(x) ⊆ x.

Thus, there is a fixed point x0 ∈ x of g(x),

g(x0) = x0 − Cf (x0) = x0,

so x0 is a root of f (x).

14 / 30

Krawczyk method

Theorem (Kahan, 1968)

If K (x) ⊆ int x, then there is a unique root in x and ∇f (x) is regular.

Recall Theorem from Lecture 2

Let x ∈ IRn and C ∈ Rn×n. If

K (x) = Cb+ (In − CA)x ⊆ int x,

then C is nonsingular, A is regular, and Σ ⊆ x.

Proof.

The inclusion K (x) ⊆ int x reads

−Cf (x0) + (In − C∇f (x))(x − x0) ⊆ int(x− x0)

Apply the above Theorem for

b := −f (x0), A := ∇f (x), x := x− x0

We have that ∇f (x) is regular, which implies uniqueness.

15 / 30

Exercises for YOU

Exercise

Let f (x , c) : Rn × R 7→ Rn be a function depending on parameter c . Let
c ∈ IR and x ∈ IRn. Give a condition under which there is a simple zero
in f (x , c) in x for each c ∈ c.

16 / 30

Verification

Problem formulation

Given an approximate solution x∗, find y ∈ IRn such that there is a
solution in x∗ + y.

ε-inflation method (Rump, 1983)

Put y := −Cf (x0).

Repeat inflating z := [0.9, 1.1]y + 10−20[−1, 1] and updating

y := −Cf (x0) + (In − C∇f (x))z

until y ⊆ int z.

Then, there is a unique solution in x∗ + y.

17 / 30

Verification

Example

π2(y − π/2) + 4x2 sin(x) = 0, x − π − cos(y) = 0.

1

2

3

1 2 3 4 5 x

y

x∗x∗

Approximate solution x∗ = (3.1415, 1.5708)T .

Enclosing with accuracy 10−5 fails, but accuracy 10−4 succeeds.

18 / 30

Next Section

1 Nonlinear Equations

2 Interval Newton method (square system)

3 Krawczyk method (square case)

4 More general constraints

19 / 30

More general constraints

Constraints

equations hi(x) = 0, i = 1, . . . , I

inequalities gj(x) ≤ 0, j = 1, . . . , J

may be others, but not considered here
(6=, quantifications, logical operators, lexicographic orderings, . . .)

Problem

Denote by Σ the set of solutions in an initial box x0 ∈ IRn?

Problem: How to describe Σ?

Subpavings

Split x into a union of three sets of boxes such that

the first set has boxes provably containing no solution

the second set has boxes that provably consist of only solutions

the third set has boxes which may or may not contain a solution

20 / 30

Subpaving Example

Example

x2 + y2 ≤ 16,

x2 + y2 ≥ 9

Figure: Exact solution set

−4

−3

−2

−1

0

1

2

3

4

Figure: Subpaving approximation

21 / 30

Subpaving Algorithm

Branch & Bound Scheme

1: L := {x0}, [set of boxes to process]
2: S := ∅, [set of boxes with solutions only]
3: N := ∅, [set of boxes with no solutions]
4: B := ∅, [set of the undecidable boxes]
5: while L 6= ∅ do
6: choose x ∈ L and remove x from L
7: if x ⊆ Σ then
8: S := S ∪ x
9: else if x ∩Σ = ∅ then

10: N := N ∪ x
11: else if x∆i < ε ∀i then
12: B := B ∪ x
13: else
14: split x into sub-boxes and put them into L
15: end if
16: end while

22 / 30

Subpaving Example

Example (thanks to Elif Garajová)

−4

−3

−2

−1

ε = 1.0
time: 0.952 s

ε = 0.5
time: 2.224 s

ε = 0.125
time: 9.966 s

23 / 30

Algorithm More in Detail

Test x ⊆ Σ

no equations and g j(x) ≤ 0 ∀j

Test x ∩ Σ = ∅
0 6∈ hi (x) for some i

g
j
(x) > 0 for some j

Also very important

Which box to choose (data structure fo L)?
How to divide the box? (which coordinate, which place, how many
sub-boxex)

Improvement

Contraction of x such that no solution is missed (and do not use B).

24 / 30

Contractors

Definition

Contractor A function C : IRn → IRn is called a contractor if ∀x ∈ IRn we
have

C(x) ⊆ x

C(x) ∩Σ = x ∩Σ

Example

C−→

25 / 30

A Simple Contractor – Constraint Propagation

Example

Consider the constraint

x + yz = 7, x ∈ [0, 3], y ∈ [3, 5], z ∈ [2, 4].

Express x

x = 7− yz ∈ 7− [3, 5][2, 4] = [−13, 1].

Thus, the domain for x is [0, 3] ∩ [−13, 1] = [0, 1].

Express y

y = (7− x)/z ∈ (7− [0, 1])/[2, 4] = [1.5, 3.5].

Thus, the domain for y is [3, 5] ∩ [1.5, 3.5] = [3, 3.5].

Express z

z = (7− x)/y ∈ (7− [0, 1])/[3, 3.5] = [127 ,
7
3].

Thus, the domain for z is [2, 4] ∩ [127 ,
7
3] = [2, 73].

No further propagation needed as each variable appears just once.
26 / 30

A Simple Contractor – Constraint Propagation

Example

Consider the constraint

ex − xyz = 10, x ∈ x = [4, 5], y ∈ y = [3, 4], z ∈ z = [2, 3].

Contractions of domains:

iteration x y z

1 [4, 4.2485] [3.4991, 4] [2.6243, 3]
2 [4, 4.1106] [3.6165, 4] [2.7124, 3]
3 [4, 4.0831] [3.6409, 4] [2.7306, 3]
4 [4, 4.0775] [3.6458, 4] [2.7344, 3]
5 [4, 4.0764] [3.6469, 4] [2.7351, 3]
...
∞ [4, 4.0761] [3.6471, 4] [2.7353, 3]

Multiple appearance of x causes infinite convergence.

27 / 30

2B-consistency

Definition (2B-consistency)

A set of constraints ck(x), k = 1, . . . ,K , on a box x0 ∈ IRn is
2B-consistent if for each k ∈ {1, . . . ,K} and each i ∈ {1, . . . , n} there are
some x , x ′ ∈ x0 such that xi = x0i , x

′
i = x0i , and conditions ck(x) and

ck(x
′) are valid.

Remark

Constraint propagation tries to approach 2B-consistency.

Drawback: 2B-consistency looks at constraints separately.

28 / 30

Software

Free Constraint Solving Software

Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html

Quimper (by Gill Chabert and Luc Jaulin),
written in an interval C++ library IBEX,
a language for interval modelling and handling constraints,
http://www.emn.fr/z-info/ibex

RealPaver (by L. Granvilliers and F. Benhamou),
a C++ package for modeling and solving nonlinear and nonconvex
constraint satisfaction problems,
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver

RSolver (by Stefan Ratschan),
solver for quantified constraints over the real numbers,
implemented in the programming language OCaml,
http://rsolver.sourceforge.net/

29 / 30

References

G. Alefeld and J. Herzberger.
Introduction to Interval Computations.
Academic Press, New York, 1983.

F. Benhamou and L. Granvilliers.
Continuous and interval constraints.
In Handbook of Constraint Programming, chap. 16, 571–603. Elsevier, 2006.

G. Chabert and L. Jaulin.
Contractor programming.
Artif. Intell., 173(11):1079-1100, 2009.

F. Goualard and C. Jermann.
A reinforcement learning approach to interval constraint propagation.
Constraints, 13(1):206–226, 2008.

L. Jaulin, M. Kieffer, O. Didrit, and É. Walter.
Applied Interval Analysis.
Springer, London, 2001.

S. M. Rump.
Verification methods: Rigorous results using floating-point arithmetic.
Acta Numer., 19:287–449, 2010.

30 / 30

Global Optimization by Interval Techniques
Interval Programming 8

Milan Hlad́ık 1 Michal Černý 2

1 Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic

http://kam.mff.cuni.cz/~hladik/

2 Faculty of Computer Science and Statistics,

University of Economics, Prague, Czech Republic

http://nb.vse.cz/~cernym/

Workshop on Interval Programming
7th International Conference of Iranian Operation Research Society

Semnan, Iran, May 12–13, 2014

1 / 46

Outline

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

2 / 46

Next Section

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

3 / 46

Formulation and Complexity

Global optimization problem

Compute global (not just local!) optima to

min f (x) subject to g(x) ≤ 0, h(x) = 0, x ∈ x0,

where x0 ∈ IRn is an initial box.

Theorem (Zhu, 2005)

There is no algorithm solving global optimization problems using
operations +,×, sin.

Proof.

From Matiyasevich’s theorem solving the 10th Hilbert problem.

Remark

Using the arithmetical operations only, the problem is decidable by Tarski’s
theorem (1951).

4 / 46

Interval Approach to Global Optimization

Branch & Bound Scheme

1: L := {x0}, [set of boxes]
2: c∗ := ∞, [upper bound on the minimal value]
3: while L 6= ∅ do
4: choose x ∈ L and remove x from L,
5: contract x,
6: find a feasible point x ∈ x and update c∗,
7: if maxi x

∆
i > ε then

8: split x into sub-boxes and put them into L,
9: else

10: give x to the output boxes,
11: end if
12: end while

It is a rigorous method to enclose all global minima in a set of boxes.

5 / 46

Box Selection

Which box to choose?

the oldest one

the one with the largest edge, i.e., for which maxi x
∆
i is maximal

the one with minimal f (x).

6 / 46

Division Directions

How to divide the box?
1 Take the widest edge of x, that is

k := arg max
i=1,...,n

x∆i .

2 (Walster, 1992) Choose a coordinate in which f varies possibly mostly

k := arg max
i=1,...,n

f ′xi (x)
∆
x∆i .

3 (Ratz, 1992) It is similar to the previous one, but uses

k := arg max
i=1,...,n

(f ′xi (x)xi)
∆
.

Remarks

by Ratschek & Rokne (2009) there is no best strategy for splitting

combine several of them

the splitting strategy influences the overall performance

7 / 46

Contracting and Pruning

Aim

Shrink x to a smaller box (or completely remove) such that no global
minimum is removed.

Simple Techniques

if 0 6∈ hi (x) for some i , then remove x

if 0 < gj (x) for some j , then remove x

if 0 < f ′xi (x) for some i , then fix xi := x i

if 0 > f ′xi (x) for some i , then fix xi := x i

Optimality Conditions

employ the Fritz–John (or the Karush–Kuhn–Tucker) conditions

u0∇f (x) + uT∇h(x) + vT∇g(x) = 0, v ≥ 0,

h(x) = 0, g(x) ≤ 0, vℓgℓ(x) = 0 ∀ℓ, ‖(u0, u, v)‖ = 1.

solve by the Interval Newton method

8 / 46

Contracting and Pruning

Inside the Feasible Region

Suppose there are no equality constraints and gj (x) < 0 ∀j .
(monotonicity test) if 0 6∈ f ′xi (x) for some i , then remove x

apply the Interval Newton method to the additional constraint
∇f (x) = 0

(nonconvexity test) if the interval Hessian ∇2f (x) contains no
positive semidefinite matrix, then remove x

9 / 46

Next Section

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

10 / 46

Feasibility Test

Aim

Find a feasible point x∗, and update c∗ := min(c∗, f (x∗)).

Why?

Remove boxes with f (x) > c∗.

We can include f (x) ≤ c∗ to the constraints.

No equations

If no equality constraints, take, e.g., x∗ := xc provided g(xc) ≤ 0.

11 / 46

Feasibility Test

For equations

if k equality constraints, fix n − k variables xi := xci and solve system
of equations by the interval Newton method

if k = 1, fix the variables corresponding to the smallest absolute
values in ∇h(xc)

x xc

h(x) = 0

∇h(xc)

If k > 1, transform the matrix ∇h(xc) to REF by using a complete
pivoting, and fix components corresponding to the right most columns

12 / 46

Lower Bounds

Aim

Given a box x ∈ IRn, determine a lower bound to f (x).

Why?

if f (x) > c∗, we can remove x

minimum over all boxes gives a lower bound on the optimal value

Methods

interval arithmetic

mean value form

slope form

Lipschitz constant approach

αBB algorithm

. . .

13 / 46

Next Section

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

14 / 46

αBB algorithm

Special cases: Bilinear terms

For every y ∈ y ∈ IR and z ∈ z ∈ IR we have

yz ≥ max{yz + zy − yz, yz + zy − yz}.

General case: Convex underestimators for f (x)

Construct a function g : Rn 7→ R satisfying:

f (x) ≥ g(x) for every x ∈ x,

g(x) is convex on x ∈ x.

αBB algorithm (Androulakis, Maranas & Floudas, 1995)

Consider an underestimator g(x) ≤ f (x) in the form

g(x) := f (x)−
n∑

i=1

αi (x i − xi)(xi − x i), where αi ≥ 0 ∀i .

15 / 46

Illustration

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3

−300

−200

−100

0

100

200

Function f (x) and its convex underestimator g(x).

16 / 46

Computation of α

Idea

The Hessian of g(x) reads

∇2g(x) = ∇2f (x) + 2 diag(α).

Choose α large enough to ensure positive semidefinitness of the Hessian of

g(x) := f (x)−∑n
i=1 αi (x i − xi)(xi − x i).

Interval Hessian matrix

Let H be an interval matrix enclosing the image of ∇2f (x) over x ∈ x:

∂2

∂xi∂xj
f (x) ∈ hij = [hij , hij], ∀x ∈ x.

Remarks

Checking positive semidefiniteness of each H ∈ H is co-NP-hard.

Various enclosures for eigenvalues of H ∈ H.

Scaled Gerschgorin method enables to express αi -s.

17 / 46

Computation of α

Scaled Gerschgorin method for α

αi := max
{
0,−1

2

(
hii −

∑
j 6=i |hij |dj/di

)}
, i = 1, . . . , n,

where |hij | = max
{
|hij |, |hij |

}
.

To reflect the range of the variable domains, use d := x − x .

Theorem (H., 2014)

The choice d := x − x is optimal (i.e., it minimizes the maximum
separation distance between f (x) and g(x)) if

hiidi −
∑

j 6=i |hij |dj ≤ 0, ∀i = 1, . . . , n.

18 / 46

Next Section

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

19 / 46

Linearization

Interval linear programming approach

linearize constraints,

compute new bounds and iterate.

Example

xx

S

x

S

x x′ ⊆ x

S

20 / 46

Mean value form

Theorem

Let f : Rn 7→ R, x ∈ IRn and a ∈ x. Then

f (x) ⊆ f (a) +∇f (x)T (x− a),

Proof.

By the mean value theorem, for any x ∈ x there is c ∈ x such that

f (x) = f (a) +∇f (c)T (x − a) ∈ f (a) +∇f (x)T (x− a).

Improvements

successive mean value form

f (x) ⊆ f (a) + f ′x1(x1, a2, . . . , an)(x1 − a1)

+ f ′x2(x1, x2, a3 . . . , an)(x2 − a2) + . . .

+ f ′xn(x1, . . . , xn−1, xn)(xn − an).

replace derivatives by slopes

21 / 46

Slopes

Slope form enclosure

f (x) ⊆ f (a) + S(x, a)(x − a),

where a ∈ x and

S(x , a) :=

{
f (x)−f (a)

x−a if x 6= a,

f ′(x) otherwise.

Remarks

Slopes can be replaced by derivatives, but slopes are tighter.

Slopes can be computed in a similar way as derivatives.

function its slope S(x , a)

x 1
f (x)± g(x) Sf (x , a)± Sg (x , a)

f (x) · g(x) Sf (x , a)g(a) + f (x)Sg (x , a)

e f (x) e f (x)Sf (x , a)

22 / 46

Slopes

Example

f (x) = 1
4x

2 − x + 1
2 , x = [1, 7].

f ′(x) = [−1
2 ,

5
2], Sf (x, x

c) = [14 ,
7
4].

1

2

3

4

5

1 2 3 4 5 6 7 8−1 0 x

y

f (x)

f ′(x)

Sf (x, x
c)

23 / 46

Linearization

Interval linearization

Let x0 ∈ x. Suppose that a for some interval matrices A and B we have

h(x) ⊆ A(x − x0) + h(x0), ∀x ∈ x

g(x) ⊆ B(x − x0) + g(x0), ∀x ∈ x,

e.g., by the mean value form, slopes, . . .

Interval linear programming formulation

Now, the set S is enclosed by

A(x − x0) + h(x0) = 0,

B(x − x0) + g(x0) ≤ 0.

What remains to do

Solve the interval linear program

Choose x0 ∈ x

24 / 46

Linearization

Case x0 := x

Let x0 := x . Since x − x is non-negative, the solution set to

A(x − x0) + h(x0) = 0,

B(x − x0) + g(x0) ≤ 0,

is described by

Ax ≤ A x − h(x), Ax ≥ Ax − h(x),

Bx ≤ B x − g(x).

Similarly if x0 is any other vertex of x

25 / 46

Linearization

General case

Let x0 ∈ x. The solution set to

A(x − x0) + h(x0) = 0,

B(x − x0) + g(x0) ≤ 0,

is described by

|Ac(x − x0) + h(x0)| ≤ A∆|x − x0|,
Bc(x − x0) + g(x0) ≤ B∆|x − x0|.

Non-linear description due to the absolute values.

How to get rid of them?

Estimate from above by a linear function: |x − x0| ≤ α(x − x0) + β.
(Easy to find the best upper linear estimation.)

26 / 46

Linearization

Example

Typical situation when choosing x0 to be vertex:

x

x0

S

27 / 46

Linearization

Example

Typical situation when choosing x0 to be the opposite vertex:

x

x0

S

28 / 46

Linearization

Example

Typical situation when choosing x0 = xc :

x S

x0

29 / 46

Linearization

Example

Typical situation when choosing x0 = xc (after linearization):

x S

x0

30 / 46

Linearization

Example

Typical situation when choosing all of them:

x S

31 / 46

Next Section

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

32 / 46

Examples

Example (The COPRIN examples, 2007, precision ∼ 10−6)

tf12 (origin: COCONUT, solutions: 1, computation time: 60 s)

min x1 +
1
2x2 +

1
3x3

s.t. − x1 − i
mx2 − (i

m)2x3 + tan(i
m) ≤ 0, i = 1, . . . ,m (m = 101).

o32 (origin: COCONUT, solutions: 1, computation time: 2.04 s)

min 37.293239x1 + 0.8356891x5x1 + 5.3578547x23 − 40792.141

s.t. −0.0022053x3x5 + 0.0056858x2x5 + 0.0006262x1x4 − 6.665593 ≤ 0,
−0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 − 85.334407 ≤ 0,

0.0071317x2x5 + 0.0021813x2
3 + 0.0029955x1x2 − 29.48751 ≤ 0,

−0.0071317x2x5 − 0.0021813x2
3 − 0.0029955x1x2 + 9.48751 ≤ 0,

0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 − 15.699039 ≤ 0,
−0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 + 10.699039 ≤ 0.

Rastrigin (origin: Myatt (2004), solutions: 1 (approx.), time: 2.07 s)

min 10n+
∑n

j=1(xj − 1)2 − 10 cos(2π(xj − 1)),

where n = 10, xj ∈ [−5.12, 5.12].
33 / 46

Examples

One of the Rastrigin functions.

34 / 46

Software

Rigorous global optimization software

GlobSol (by R. Baker Kearfott), written in Fortran 95, open-source
exist conversions from AMPL and GAMS representations,
http://interval.louisiana.edu/

COCONUT Environment, open-source C++ classes
http://www.mat.univie.ac.at/~coconut/coconut-environment/

GLOBAL (by Tibor Csendes), for Matlab / Intlab,
free for academic purposes
http://www.inf.u-szeged.hu/~csendes/linkek_en.html

PROFIL /BIAS (by O. Knüppel et al.), free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

See also

C.A. Floudas (http://titan.princeton.edu/tools/)

A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)

35 / 46

References

C. A. Floudas.
Deterministic Global Optimization. Theory, Methods and Applications.
Kluwer, Dordrecht, 2000.

C. A. Floudas and P. M. Pardalos, editors.
Encyclopedia of Optimization. 2nd ed.
Springer, New York, 2009.

E. R. Hansen and G. W. Walster.
Global Optimization Using Interval Analysis.
Marcel Dekker, New York, second edition, 2004.

R. B. Kearfott.
Rigorous Global Search: Continuous Problems.
Kluwer, Dordrecht, 1996.

A. Neumaier.
Complete Search in Continuous Global Optimization and Constraint
Satisfaction.
Acta Numerica, 13:271–369, 2004.

36 / 46

Next Section

1 Global Optimization

2 Upper and Lower Bounds

3 Convexification

4 Linearization

5 Examples and Conclusion

6 Algorithmic Issues

37 / 46

AlgoIss: Global Optimization

Minimization of f (x1, . . . , xn) — usual testing functions:

Rastrigin’s function 20 + x21 + x22 − 10(cos 2πx1 + cos 2πx2)

Banana (Rosenbrock) function (1− x1)
2 + 100(x2 − x21)

2

hidden minimum function

−2

−1

0

1

2 −2

0

2

4

0

1000

2000

3000

4000

38 / 46

AlgoIss: Computation models

How to represent the function f ?

Special optimization problems: analytical expression (e.g.
1
2x

THx + cTx + α for quadratic programming)

A general function: oracle model — there is a blackbox f s.t. on a
query x it returns f (x)

In the oracle model: complexity often measured by the number of
oracle queries

Problem: How to measure the size of input?

39 / 46

AlgoIss: Example
Hidden-minimum function:

0

−1

ε

a

Theorem

There is no finite upper bound on the number of steps for an optimization
algorithm to locate the global minimum.

Proof.

For a finite number of testing points, ε can be chosen so small so that the
algorithm cannot distinguish between the zero function and the
hidden-minimum function.

40 / 46

AlgoIss: Further problems

Approximate solution

The minimizer may be irrational — a problem with representation by
a Turing machine

Example: min{xTAx : xTx ≤ 1} = λmin(A) for A negative definite.
The number λmin(A) is often irrational even for a rational matrix A;
the minimizer is its corresponding eigenvector.

Possible solution: real-number computation model. [Drawback: we
lose finite-time convergence of many weakly polynomial methods,
such as the Ellipsoid Method or IPMs.]

Another solution: find approximate optima.

41 / 46

AlgoIss: Approximate minimum

Definition

A point x is an ε-approximate minimum is f (x)− f (x∗) ≤ ε, where x∗ is
the true minimizer.

Remarks.

Weak definition — though f (x) is close to f (x∗), the distance
‖x − x∗‖∞ can still be extremely large. So sometimes one also adds
the requirement: “. . . and ‖x − x∗‖∞ ≤ ε”.

This problem vanishes for Lipschitz functions.

Theorem

If f is L-Lipschitz, then the ε-approximate global minimum of f over a unit
cube can be found in ≈ (12

L
ε)

n steps and not faster.

42 / 46

AlgoIss: Approximate minimum (contd.)

Theorem

If f is L-Lipschitz, then the ε-approximate global minimum of f over the
unit cube [0, e] can be found in ≈ (12

L
ε)

n steps and not faster.

Proof idea.

Upper bound. Cover the cube [0, e] by a regular n-dimensional grid
with distance 2ε

L between neighbor points and evaluate f in each grid
point; then take the minimum. Then ‖x − x∗‖∞ ≤ ε

L for some grid
point x and f (x) − f (x∗) ≤ L‖x − x∗‖ ≤ ε.

Lower bound. Let ε′ > ε. Define a hidden-minimum function fv

fv (x) =

{
0 if‖v − x‖∞ ≥ ε′

L ,

L‖v − x‖∞ − ε′ if‖v − x‖∞ < ε′
L .

Then, v is the minimizer. Idea: any algorithm that uses less than
(12

L
ε)

n oracle queries to f leaves some region of [0, e] “uninspected”;
so we can place v into that region. Thus the algorithm cannot find it
and it cannot distinguish between fv and the zero function.

43 / 46

AlgoIss: Summary and special cases

In general, global minimization is nonrecursive (to recall: an algorithm
for the question “min f (x1, . . . , xn) ≤? 0” would solve Hilbert’s Tenth
Problem. This holds true even for the case n = 1.

So we must inspect the general problem by subcases.

Polynomials

Recursive by Tarski’s quantifier elimination, but extremely slow.

Idea: the question “does a given polynomial p(x1, . . . , xn) attain a
value f0?” can be written as an arithmetical formula

(∃x1) · · · (∃xn)p(x1, . . . , xn) = f0

& x1 ≤ x1 ≤ x1 & · · · & xn ≤ xn ≤ xn. (1)

Tarski proved that Theory of Real Closed Fields is decidable. So in
principle, we can enumerate all proofs until we find a proof of (1) or
its negation. This proves recursivity.

44 / 46

AlgoIss: Summary and special cases

Convex optimization

“Nice” case: local minimum = global minimum

However, in general nothing can be proved without additional
assumptions

ε-approximate minimization of a differentiable convex L-Lipschitz
function can be done in time O(n2(log n+ log L

ε)) in the oracle model

Further problems we must face: Example

Optimization under quadratic constraints xTHx + cTx ≤ γ — is the
feasibility problem in NP?

Problem: a feasible point cannot be used as an NP-witness, since it
can happen that bit-size of (a unique) feasible point is exponential in
bitsize of H, c , γ.

45 / 46

AlgoIss: Summary and special cases

Quadratic programming min xTHx + cTx s.t. Ax ≤ b

The convex case (H psd): polynomial time

A single eigenvalue of H is negative: NP-hard

H general: optimization over an ellipsoid: polynomial time

H general: optimization over a simplex: NP-hard

H general: “is given x a local minimum of xTHx + cTx?”: NP-hard

further results: the form min xTHx + cTx s.t. x ∈ x with H nsd of a
fixed rand: polynomial time

46 / 46

