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Motivation

Why positive (semi)definiteness of interval matrices?

In global optimization, for convexity checking:

If a function is convex on a box, then a stationary point is a minimum.

If a function is convex nowhere on a box, and the box is inside the
feasible set, then there is no minimum inside.

Also:

Hurwitz stability of dynamical systems.

Schur stability of dynamical systems.
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Notation

Interval Matrix

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

A Symmetric Interval Matrix

AS := {A ∈ A : A = AT}.

Without loss of generality assume that A = AT , A = A
T
, and AS 6= ∅.
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Positive Semidefiniteness and Positive Definiteness

AS is positive (semi)definite if every A ∈ AS is positive (semi)definite.

Theorem (Rohn, 1994)

The following are equivalent

1 AS is positive semidefinite,

2 Ac − diag(z)A∆ diag(z) is positive semidefinite ∀z ∈ {±1}n,

3 xTAcx − |x |TA∆|x | ≥ 0 for each x ∈ R
n.

Theorem (Rohn, 1994)

The following are equivalent

1 AS is positive definite,

2 Ac − diag(z)A∆ diag(z) is positive definite for each z ∈ {±1}n,

3 xTAcx − |x |TA∆|x | > 0 for each 0 6= x ∈ R
n,

4 Ac is positive definite and A is regular.
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Complexity

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of AS is co-NP-hard.

Theorem (Rohn, 1994)

Checking positive definiteness of AS is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive semidefinite matrix in AS is a
polynomial time problem.

Proof.

By reduction to semidefinite programming.
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Sufficient Conditions

Theorem

1 AS is positive semidefinite if λmin(A
c) ≥ ρ(A∆).

2 AS is positive definite if λmin(A
c) > ρ(A∆).

3 AS is positive definite if Ac is positive definite and
ρ(|(Ac)−1|A∆) < 1.

Proof.

1 AS is positive semidefinite iff λmin(A) ≥ 0 ∀A ∈ AS .
Now, employ the smallest eigenvalue set enclosure

λmin(A) ∈ [λmin(A
c)− ρ(A∆), λmin(A

c) + ρ(A∆)] ∀A ∈ AS .

2 Analogous.

3 Use Beeck’s sufficient condition for regularity of A.
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Application: Convexity Testing

Theorem

A function f : Rn 7→ R is convex on x ∈ IR
n iff its Hessian ∇2f (x) is

positive semidefinite ∀x ∈ int x.

Corollary

A function f : Rn 7→ R is convex on x ∈ IR
n if ∇2f (x) is positive

semidefinite.
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Application: Convexity Testing

Example

Let

f (x , y , z) = x3 + 2x2y − xyz + 3yz2 + 8y2,

on x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z = [0, 1]. The Hessian of f reads

∇2f (x , y , z) =





6x + 4y 4x − z −y
4x − z 16 −x + 6z
−y −x + 6z 6y





Evaluation the Hessian matrix by interval arithmetic results in

∇2f (x, y, z) ⊆





[16, 26] [7, 12] −[1, 2]
[7, 12] 16 [−3, 4]
− [1, 2] [−3, 4] [6, 12]





Now, both sufficient conditions for positive definiteness succeed.

Thus, we can conclude that f si convex on the interval domain.
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Parametric Interval Matrices

Parametric Interval Matrix

Consider

A(p) =

K
∑

k=1

A(k)pk ,

where A(1), . . . ,A(K) ∈ R
n×n are fixed symmetric matrices and p1, . . . , pK

are parameters varying respectively in p1, . . . ,pK ∈ IR.

Definition

A(p), p ∈ p, is strongly positive (semi)definite if A(p) is positive
(semi)definite for each p ∈ p.

It is weakly positive (semi)definite if A(p) is positive (semi)definite for
at least one p ∈ p.
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Parametric Interval Matrices

Relaxation

Evaluation A(p) =
∑K

k=1 A
(k)pk by interval arithmetic

encloses the set of matrices A(p), p ∈ p,

may lead to loss of strong positive (semi-)definiteness.

Example
Let

A(p) =

(

1 1
1 1

)

p, p ∈ p = [0, 1].

This parametric matrix is strongly positive semidefinite, but its relaxation

A(p) =

(

[0, 1] [0, 1]
[0, 1] [0, 1]

)

is not as it contains, e.g., the indefinite matrix
(

0 1
1 0

)

.
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Strong Positive Semidefiniteness

Theorem

The following are equivalent:

(1) A(p) is positive semidefinite for each p ∈ p,

(2) A(p) is positive semidefinite for each p such that pk ∈ {p
k
, pk} ∀k,

(3) xTA(pc)x −
∑K

k=1 |x
TA(k)x |p∆k ≥ 0 for each x ∈ R

n.

It reduces the problem to checking positive semidefiniteness of 2K

real matrices.

The number can be further decreased in some cases.

Theorem

(1) If A(i) is positive semidefinite for some i , then we can fix pi := p
i
for

checking strong positive semidefiniteness.

(2) If A(i) is negative semidefinite for some i , then we can fix pi := pi for
checking strong positive semidefiniteness.
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Strong Positive Semidefiniteness – Sufficient Condition

Theorem

For each k, split A(k) = A
(k)
1 − A

(k)
2 such that both A

(k)
1 ,A

(k)
2 are positive

semidefinite. Then A(p), p ∈ p, is strongly positive semidefinite if

K
∑

k=1

(

A
(k)
1 p

k
− A

(k)
2 pk

)

is positive semidefinite.

How to Do the Splitting

1 Let A(k) = QΛQT be a spectral decomposition of A(k).

2 Let Λ+ be the positive part of Λ.

3 Let Λ− be the negative part of Λ.

4 Then A(k) = QΛQT = QΛ+QT − QΛ−QT and both QΛ+QT ,
QΛ−QT are positive semidefinite.

Overall cost: K + 1 spectral decompositions.
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Weak Positive Semidefiniteness

Theorem

Checking weak positive semidefiniteness is a polynomial problem.

Proof.

By reduction to semidefinite programming. Let M(p) be the block
diagonal matrix with blocks

A(p), p1 − p
1
, . . . , pK − p

K
, p1 − p1, . . . , pK − pK .

All entries of M(p) depends affinely on variables p.

Positive definiteness of M(p) is equivalent to positive definiteness of
A(p) and feasibility of variables p ∈ p.

Therefore, by solving this semidefinite program we check whether A(p),
p ∈ p, is weakly positive semidefinite.
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Strong Positive Definiteness

Theorem (The following are equivalent)

(1) A(p), p ∈ p, is strongly positive definite,

(2) A(p) is positive definite for each p such that pk ∈ {p
k
, pk} ∀k,

(3) xTA(pc)x −
∑K

k=1 |x
TA(k)x |p∆k > 0 for each 0 6= x ∈ R

n.

Theorem

(1) If A(i) is positive semidefinite for some i , then we can fix pi := p
i
for

checking strong positive definiteness.

(2) If A(i) is negative semidefinite for some i , then we can fix pi := pi for
checking strong positive definiteness.

Theorem (Sufficient Condition)

For each k = 1, . . . ,K, split A(k) = A
(k)
1 − A

(k)
2 such that both A

(k)
1 ,A

(k)
2

are positive semidefinite. Then A(p), p ∈ p, is strongly positive definite if

∑K
k=1

(

A
(k)
1 p

k
− A

(k)
2 pk

)

is positive definite.
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Strong Positive Definiteness and Regularity

Definition

A(p), p ∈ p, is called regular if A(p) is nonsingular for each p ∈ p.

Theorem

The parametric matrix A(p), p ∈ p, is strongly positive definite if and only
if A(p) is positive definite for some p ∈ p and A(p), p ∈ p, is regular.

Beeck sufficient regularity criterion

A(p), p ∈ p, is regular if

ρ(M∆) < 1,

where

M :=
∑K

k=1

(

CA(k)
)

pk ,

and C = A(pc)−1 is the preconditioner.

Both sufficient conditions for strong positive definiteness are incomparable.
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Application in Convexity Testing

Consider a class of functions

f (x) =

L
∑

ℓ=1

cℓxiℓxjℓxkℓ ,

where iℓ, jℓ, kℓ ∈ {0, . . . , n} are not necessarily mutually different, and
x0 = 1.

Problem

Check for convexity of f (x) on x ∈ IR
n.

The Hessian matrix has directly a linear parametric form.

Each entry of the Hessian of f (x) is a linear function with respect to
x ∈ R

n.

The variables x play the role of the parameters p, and their domain x

works as p.
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Application in Convexity Testing – Example

Example

Check convexity of

f (x , y , z) = x3 + 2x2y − xyz + 3yz2 + 5y2,

on x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z = [0, 1]. The Hessian of f reads

∇2f (x , y , z) =





6x + 4y 4x − z −y
4x − z 10 −x + 6z
−y −x + 6z 6y



 .

Relaxation leads to

∇2f (x, y, z) ⊆





[16, 26] [7, 12] −[1, 2]
[7, 12] 10 [−3, 4]
− [1, 2] [−3, 4] [6, 12]



 ,

which is not strongly positive semidefinite.

Nevertheless, the sufficient conditions for the parametric Hessian enclosure
succeed in proving convexity!
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Conclusion

Extension of characterization of positive (semi)definiteness of interval
matrices to parametric forms.

Surprisingly, finite reduction is possible.

Even more surprisingly, complexity needn’t be worse (from 2n to 2K ).
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