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Abstract. This paper accompanies our invited lecture on interval 

methods in optimization. First, we put the interval approach in 

context with other approaches to modeling inexactness, instabil-

ity or imprecision of input data; in particular, we discuss the sto-

chastic and fuzzy approach. Then we turn to interval linear pro-

gramming. We show some important aspects in which the inter-

val-valued linear programs differ from traditional linear pro-

grams. We emphasize how various formulations of the auxiliary 

linear program, which are equivalent in the traditional setting, 

differ in the interval setting from the computational point of 

view. We also consider some natural questions, e.g. weak and 

strong feasibility and the problem of finding the range of possi-

ble optimal values and the catastrophic scenario. We also point 

out some (subjectively selected) interesting open problems in the 

field. 
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1 Introduction 

Optimization is a well-studied branch of mathematics, which has many im-

portant applications in real life: for example, let us mention statistics & data 

analysis, computer science, operations research, physics and many others. To 

be more concrete, in computer science there are various applications in data 

mining, neural networks, artificial intelligence, assignment of tasks to proces-

sors, analysis of networks and many others. In operations research, optimiza-

tion is a tool for solving problems in logistics and transportation problems, 
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production planning and scheduling, human resource management and in-

vestment & portfolio management.  

We have a strong mathematical theory for various kinds of optimization 

problems – the most fundamental stone is linear programming, and we can 

continue to discrete optimization, convex nonlinear programming and many 

other advanced branches. However, the theory available to us usually leans 

on a strong assumption, which might not be fulfilled in practice: that data of 

the optimization problem are known fixed constants. 

In practice it often happens that data suffer from imprecision – they are 

inexact, estimated, subjective, noisy, affected by errors, or subject to instabil-

ity or changes. Then, natural questions come to mind: will the optimal solu-

tion be stable (or: robust), meaning that a small imprecision or change in data 

of the optimization problem affects the optimal solution only negligibly? Can 

a change in data result in a significant change of the optimal value (which 

often measures costs or profits)? 

In this paper we will deal with linear programming, but the questions, 

answers, ideas and problems of investigation are applicable also in the case of 

other, more advanced optimization problems, encountered in practice. 

There are various approaches to incorporate instability or imprecision 

of data into optimization problems. We should mention at least three:  

 The stochastic approach, where data of the optimization problem 

are treated as random variables. Then, the optimal solution and op-

timal objective value are random variables. Then it makes sense to 

ask questions about their distribution, moments, tail probabilities 

etc. 

 The fuzzy approach, where data of the optimization problem are 

treated as fuzzy numbers. Then the problem is known as fuzzy op-

timization and is extensively studied (see e.g. Ramík, 2006). 

 The interval (or: possibilistic) approach, where data of the optimi-

zation problem are treated as closed real intervals of possible val-

ues, which the unknown/instable/imprecise variable can attain. 

This text is devoted to the third approach in case of the foundation stone of 

optimization – Linear Programming. (The interval approach is also useful in 

statistics, see e.g. Černý et al., 2013.) 



2 Linear Programming with interval data 

Given two real matrices A A , where the relation “” is understood entry-

wise, we define the interval matrix A as a family of matrices A = [ ,A A] = 

{A:  A A A}. A similar notation is used for interval vectors (which are 

one-column interval matrices). Interval quantities (numbers, vectors, matri-

ces) are denoted in boldface.  

2.1 Formulations of an interval linear program 

An interval linear program with data A, b, c is simply a family of all linear 

programs min{c
T
x: Ax  b} satisfying A  A, b  b and c  c.  

In traditional linear programming, it is well-known that various forms 

of the auxiliary linear program min{c
T
x: Ax  b} may be transformed into 

other equivalent forms, such as min/max{c
T
x: Ax = b, x  0}, or 

min/max{c
T
x: Ax  b, x  0}, or more sophisticated formats, like the self-dual 

embedding (see Roos et al., 1998), Karmarkar Normal Form or Khachiyan 

Normal Form (see Schrijver, 1988). However, in the interval case, such trans-

formations are not always possible. The problem is that conversion of one 

form into another might cause serious computational problems. Of course, it 

depends on which question about the interval linear program we are interest-

ed in. Let us give three examples. 

Question 1. Is the interval linear programming problem strongly feasi-

ble? (Strong feasibility means: the linear program is feasible for all choices 

A  A, b  b, c  c.) The following results hold true: 

 Both questions “(A  A)(b  b)(x  
n
)[Ax  b]?” and 

“(A  A)(b  b)(x  
n
)[Ax  b, x  0]?” are decidable in 

polynomial time. 

 On the other hand: the question “(A  A)(b  b)(x  
n
) 

[Ax = b, x  0]?” is co-NP-hard. 

Question 2. Is the interval linear programming problem weakly feasi-

ble? (Weak feasibility means: the linear program is feasible for some choice 

A  A, b  b, c  c.) The following results hold true: 



 Both questions “(A  A)(b  b)(x  
n
)[Ax = b, x  0]?” and 

“(A  A)(b  b)(x  
n
)[Ax  b, x  0]?” are decidable in 

polynomial time. 

 On the other hand: the question “(A  A)(b  b)(x  
n
) 

[Ax  b]?” is NP-hard. 

Question 3. What is the range of optimal values? The following results 

hold true. The numbers 

, 0 Ax b xf (A, b, c) := max{min{c
T
x: Ax  b, x  0}: A  A, b  b, c  c}, 

, 0 Ax b xf (A, b, c) := min{min{c
T
x: Ax  b, x  0}: A  A, b  b, c  c}, 

Ax bf (A, b, c)  := max{min{c
T
x: Ax  b}: A  A, b  b, c  c}, 

, 0 Ax b xf (A, b, c) := min{min{c
T
x: Ax = b, x  0}: A  A, b  b, c  c} 

are computable in polynomial time. On the other hand, the computation of 

the numbers 

 , 0 Ax b xf (A, b, c) := max{min{c
T
x: Ax = b, x  0}: A  A, b  b, c  c}, 

 Ax bf (A, b, c) := min{min{c
T
x: Ax  b}: A  A, b  b, c  c} 

is an NP-hard problem. 

2.2 The range of optimal values in detail and the catastrophic 

scenario 

The range of optimal values [ , ]f f , discussed in Question 3 of Section 2.1, 

is an extremely important notion in interval linear programming. (To be pre-

cise, the range need not be a connected set; however, under quite general as-

sumptions it is (Mostafaee et al., 2013), and we will tacitly assume that this is 

our case.) When we interpret the objective function as a cost function, the 

value f  tells us the highest possible costs, i.e. the worst-case outcome of the 

problem modeled by the linear program. Therefore, the value f  can be in-

formally called as the catastrophic scenario. And the value f  shows the best 



case, i.e. the lowest possible costs that can be achieved by a choice A  A, b 

 b, c  c.  

Remark. The results of Question 3 of Section 2.1 show us that the 

range of optimal values [ , ]f f  can be computed efficiently only when the 

auxiliary linear program takes the form min{c
T
x: Ax  b, x  0}. Though this 

form is quite general, observe that it is not easy to introduce e.g. an equality. 

The traditional trick of replacing the equality d
T
x = e by two inequalities d

T
x 

 e and –d
T
x  –e does not work in general. Indeed, it can happen that given 

A, b, c, d, e, we have 

max{min{c
T
x: Ax  b, d

T
x = e, x  0}: A  A, b  b, c  c, d  d, e  e}  

   = max{min{c
T
x: Ax  b, d

T
x  e, –d

T
x  –e, x  0}: A  A, b  b, c  c,  

        d  d, e  e} 

    max{min{c
T
x: Ax  b, d

T
x  e, –(d)

T
x  –e, x  0}: A  A, b  b, c  c,  

d  d, d d, e  e, e e} 

   = max{min{c
T
x: Ax  b, x  0}: A  A, b  b, c  c},   (1) 

where A = 
 
 
 
  

A

d

d

 and b = 
 
 
 
 
  

b

e

e

. Notwithstanding, the catastrophic scenario can 

be computed in polynomial time when the form is Ax  b (though here is the 

same problem with introduction of equalities). Unfortunately, the cata-

strophic scenario with the formulation Ax = b, x  0 cannot be computed effi-

ciently in general.  

Remark. For special linear programs, the situation need not be so dis-

appointing. For example, consider the problem of computation of the value of 

a matrix game in mixed strategies, when the payoff matrix A is interval. The 

catastrophic scenario is the value f* := min{max{γ: Ax  γ1, 1
T
x = 1, x  0}: 

A  A}, where 1 denotes the all-one vector. An easy observation is that a 

positive perturbation of the payoff matrix cannot decrease the value of the 

game. It follows that f* = max{γ: Ax  γ1, 1
T
x = 1, x  0}, and the last ex-

pression is an ordinary linear program.   



2.3 Extreme scenarios 

Of course, we are interested not only in the interval [ , ]f f , but we also 

want to know which choice of data A  A, b  b, c  c of the interval linear 

program will lead to the catastrophic scenario and/or to the most optimistic 

scenario. We restrict ourselves to the formats Ax  b, x  0 and Ax = b, x  0. 

Vajda’s Theorem. We have , 0 Ax b xf (A, b, c) = min{ T : ,c x Ax b  

x  0}  and , 0 Ax b xf (A, b, c) = min{ T : , 0 c x Ax b x }. 

Rohn’s Theorem. We have , 0 Ax b xf (A, b, c) = min{ T : ,c x Ax b  

,Ax b  x  0} and  

, 0 Ax b xf (A, b, c)  

= 
{0,1}

max
 ns

min{ T :c x ( diag( ) )CA s A x ( diag( ) ) Cb s b , x  0}, (2) 

where A
C
 := 

1

2
( )A A  is the center of A, 

1

2
: ( )  A A A  is the radius of A 

and diag(s1, ..., sn) is the diagonal matrix with diagonal elements s1, ..., sn. 

Vajda’s Theorem tells that the catastrophic scenario is attained with the 

choice A A, b b, c  c. Observe that it does not depend on , ,A b c .  

Rohn’s Theorem suggests an exponential-time method for determining 

the catastrophic scenario – in general we must solve 2
n
 linear programs, one 

for each choice of s (i.e., for each orthant of 
n
). This is not surprising since 

from Question 3 of Section 2.1 we know that the problem is NP-hard. When 

s is the maximizer of (1), then the catastrophic scenario is attained for the 

choice ( ) CA diag s A  A, ( ) Cb diag s b  b, c  c. 

3 Further problems 

The results of Sections 2.1 – 2.3 give only an essence of problems ap-

pearing in interval linear programming. We could see that many usual tricks, 

applicable in traditional linear programming, cannot be applied in the interval 

setting: for example, we cannot simply rewrite an equation as two inequali-

ties. We have also illustrated some natural questions applicable in interval 

linear programming: how to compute the range of optimal values? For which 



choices of A  A, b  b, c  c are they attained? There are many more inter-

esting questions; the answers to some of them are known, some of them are 

still subject to further research. Here we list some of them, which are particu-

larly interesting in our opinion. 

Problem 1. Given (A, b, c), let F(A, b, c) denote the feasible polyhe-

dron of the linear program with data A, b, c (in either of the three formats 

mentioned above). Given interval data (A, b, c), define the weakly feasible set 

and strongly feasible set, respectively, as  

F* = ( , , )
  A b c

F A b c
A, b, c

,   F** = ( , , ).
  A b c

F A b c
A, b, c

 

The problem is to describe or approximate the sets F* and F**. Such an ap-

proximation may take, for example, the form of a tight interval enclosure. 

A tight interval enclosure is an interval vector z  F* such that no interval 

vector z  z with z  z satisfies z  F*. (A similar task is interesting 

for F**.) The approximation may also take the form of a tight inscribed in-

terval vector, tight circumscribed ellipsoid etc.  

Problem 2. An interval linear programming problem with data A, b, c 

is called weakly unbounded if the linear program with data A, b, c it is un-

bounded for some choice A  A, b  b, c  c. Prove that testing weak un-

boundedness is either (co-)NP-hard, or solvable in polynomial time. Positive 

results: the problem is polynomial-time solvable for the format Ax  b, x  0. 

Problem 3. Develop a theory for the case with dependencies. Depend-

ency is a problem occurring when a data point has more occurrences in the 

formulation of the auxiliary linear program. For example, the interval linear 

program 

min{c
T
(x – y): Ax – Ay  b, x  0, y  0}  with  A  A, b  b, c  c 

suffers from dependencies since the data matrix A occurs in its formulation 

twice. Dependencies can be defined more generally as additional (linear) re-

strictions among the data of the linear program, such as 

 min{c
T
(x – y): Ax – Ay  b, x  0, y  0}   

with  A  A, A  A, b  b, c  c  s.t. 
restrictions

.A A  

Recall that we have already encountered dependencies in (1). 



Problem 4. Inverse interval linear programming. Let the interval data 

A, b, c be given, together with a value f0  [ , ]f f . Find A0  A, b0  b, 

c0  c such that the optimal value of the linear program with data A0, b0, c0 

is f0. If there are more solutions, suggest suitable criteria for classification 

which of the solutions is “better” than another one and propose a method for 

finding the “better” ones.  

Remark to Problem 4. Problem 4 is interesting when the data of a lin-

ear program can be interpreted as controlling variables. For example, consid-

er the problem of network flows – the inverse interval linear programming 

problem asks how to design capacities of edges of the network to achieve a 

given maximal flow, when the capacities can be selected from given inter-

vals. 

Problem 5. Weak basis optimality. Let the interval data A, b, c be giv-

en, together with a basis B. Decide whether the basis is optimal for some 

choice A  A, b  b, c  c. Either find a polynomial algorithm, or prove 

(co)NP-hardness.  
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