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Introduction

Part I. Introduction

What is optimization?

Applications in Operations Research, Economics, Statistics, Game
Theory, ...

Imprecision of data

Formalization of Interval Linear Programming
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What is optimization?

In mathematics: optimization is a theory on maximization or
minimization of functions defined on special sets.

We are given an objective function f : Rn → R which is to be
maximized/minimized over a given region Ω ⊆ R

n, called feasible
space.

In applications: we are always maximizing or minimizing something,
for example:

Microeconomics: we want to maximize profit of a firm or minimize its
costs under limited resources;
Statistics: we want to maximize likelihood or minimize residual error
(e.g. residual sum of squares);
Experimental Design: we want to maximize measurement precision in
an experiment under restricted possibilities of available laboratory
equipment;
Portfolio Theory: we want to maximize return of an investment under
budget constraints and regulatory constraints;
Operations Research: we want to minimize the length of the path of
the Traveling Salesman;
many more applications in engineering, physics, chemistry etc.
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A basic example: Nutrition (Diet) Problem

In practice, this problem is solved e.g. by producers of dog food, often on
a daily basis.

A producer of dog food processes leftovers from butchers,
slaughterhouses and meat-processing plants.

The producer must combine the available raw materials to achieve
the declared nutrition content, e.g. enough proteins, enough calories,
not too much salt, not too much fat etc.

The producer does not care about what the ingredients exactly are:

(s)he simply buys anything from which it is possible to combine the
declared nutrition levels, as cheaply as possible,
(s)he mixes and boils the raw materials, getting a homogenous
tasteless mesh,
(s)he adds meat perfume,
(s)he fills the ‘product’ into cans,
(s)he adds one piece of real meat just under the cover of each can (for
a better visual effect),
(s)he spends plenty of money on marketing to be able to sell this stuff.
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A basic example: Nutrition Problem (continued)

For example assume that a meat processing plant offers two kinds of
leftovers:

x1 = a salami called Gothai,

x2 = mechanically separated meat.

Remark. Gothai is a legendary Czech salami; to illustrate, roasted Gothai

with vinegar and raw onion is the most beloved dish of the current
president of the Czech republic.

Now we can summarize data for our problem: we know the contents of
proteins, fat, and salt in each of the two ingredients x1, x2, and we know
their prices per ton.

Our goal. We want to mix them to obtain dog food containing at least
a declared level of proteins, at most a declared level of fat and at most
a declared level of salt. Furthermore, we want to minimize costs.
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A basic example: Nutrition Problem (continued)

We get the following optimization problem:

Gothai sep.meat demand

minimize c1x1 + c2x2
subject to:

proteins a11x1 + a12x2 > b1
fat a21x1 + a22x2 6 b2
salt a31x1 + a32x2 6 b3

x1 > 0
x2 > 0

Data of the optimization problem are denoted in red:

aij denote the contents of proteins, fat, salt in one tone of Gothai and
separated meat,

bi denote the demands,

cj denote the prices per ton of Gothai and separated meat.
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From a crisp to an interval setting

Remark. This was an example of a linear programming problem: both the
cost function and the constraints were linear. In this lecture we will deal
only with linear programming problems; however, many of the ideas can be
translated to the nonlinear setup as well.

What often happens in practice: the data aij , bi , cj are not reliable —
they are subject to imprecision, instability or changes.

Say that it is declared that Gothai contains 30% of meat and 45% of fat. But
when the delivery arrives, the producer’s laboratory finds out that the true
contents is 20% and 50%, respectively.

Prices might be subject to intraday changes — the true delivery prices c1, c2 might
be different from the declared prices. (This happens, for example, in metal
markets, where instantaneous prices are driven by the London Metal Exchange.)

Demands might be subject to changes: should the product be sold in Switzerland,
the quality must be higher (say, with a higher demand for the contents of meat in
the dog food), but for a delivery into the Czech republic lower quality is sufficient.
(At the moment the producer does not know which case will occur.)
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From a crisp to an interval setting (continued)

How can we incorporate imprecision into the model? There are (at
least) three approaches studied in literature:

data aij , bi , cj are understood as random variables −→ stochastic
programming;

data aij , bi , cj are understood as fuzzy numbers −→ fuzzy linear
programming;

data aij , bi , cj are understood as intervals −→ interval linear
programming.

We will study the last case: now, the crisp data aij , bi , cj are replaced by
closed intervals [aij , aij ], [bi , bi ], [c j , c j ] of possible values.
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The dog-food example

So we get an interval version of the dog-food linear program:

Gothai sep.meat demand

minimize [c1, c1]x1 + [c2, c2]x2
subject to:

proteins [a11, a11]x1 + [a12, a12]x2 > [b1, b1]

fat [a21, a21]x1 + [a22, a22]x2 6 [b2, b2]

salt [a31, a31]x1 + [a32, a32]x2 6 [b3, b3]

x1 > 0
x2 > 0

Natural questions: How to translate notions from traditional linear
programming to the interval setting? What is a feasible solution? What is
an optimal solution? What does unboundedness mean? What does
infeasibility mean? Etc.
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Motivation for interval data

Interval data are very frequent. Sources of intervals:

Measurement errors and rounding errors. Results of
measurements are often expressed in the form of v ±∆v .

Nonconstant constants. Many physical and chemical constants are
not constant.

Unobservable data. Example: inflation expectations.

Discretization. Continuous variables are discretized into a finite set
of values – e.g., time is split into time slots (days, years, . . . ). For
example, stock indices.

Categorization or Incomplete information. Input data is
incomplete due to protection of privacy or just due to lack of
knowledge. For instance, salary, age, etc.
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Theory and Applications

Part II. Theory and Applications

General formulation

Weak and strong properties

Optimal value function

Inverse optimization

Interesting research problems
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Notation

Notation.

An (m × n)-interval matrix A = [A,A] is the family of matrices

A = [A,A] = {A ∈ R
m×n : A 6 A 6 A},

where the inequality “6” is understood entrywise.

Interval matrices are denoted in boldface: A,B, . . . .

The center and radius matrix of an interval matrix A = [A,A] are
defined, respectively, as

Ac = 1
2(A + A), A∆ = 1

2(A− A).

The notation for interval vectors is similar.
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Interval linear programs: basic formulations

An interval linear program with data (A,b, c) is defined as a family of
linear programs

min cTx s.t. Ax 6 b, A ∈ A, b ∈ b, c ∈ c, or

min cTx s.t. Ax = b, x > 0, A ∈ A, b ∈ b, c ∈ c, or

min cTx s.t. Ax 6 b, x > 0, A ∈ A, b ∈ b, c ∈ c.

Each LP in the family is called scenario.

We simply denote the families as

min cTx s.t. Ax 6 b,

min cTx s.t. Ax = b, x > 0,

min cTx s.t. Ax 6 b, x > 0,

respectively.
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Interval linear programs: weak/strong properties

Strong property: every LP in the family has it.

Weak property: some LP in the family has it.

Examples:

strong/weak feasibility,

strong/weak unboundedness,

strong/weak optimality (meaning: is a given basis optimal for
every/some LP in the family?),

strongly/weakly feasible region.

Remark. Strong property shows robustness of the model w.r.t the
property.
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Interval linear programs: feasible region

Strongly feasible region: set of points which are feasible for every
LP in the family.
Weakly feasible region: set of points which are feasible for some LP
in the family.
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Interval linear programs: do formulations differ?

Fact. In traditional linear programming it is well-known that the three
mentioned formats

(a) min cTx s.t. Ax 6 b,

(b) min cTx s.t. Ax = b, x > 0,

(c) min cTx s.t. Ax 6 b, x > 0

are equivalent, meaning that an LP in one format is easily (in polynomial
time) reducible onto the other formats.

For example, the (b)-form LP min cTx s.t. Ax = b, x > 0 can be easily
written in the (a)-form as

min cTx s.t.

(
A

−A
−I

)
x 6

(
b

−b
0

)
.

Question. Does something similar hold for interval LPs?

Answer. No, at least from the computational perspective.
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Complexity of strong/weak properties

format: Ax = b, x > 0 Ax 6 b Ax 6 b, x > 0

strong feasibility co-NP-hard poly-time poly-time
weak feasibility poly-time NP-hard poly-time

strong unboundedness co-NP-hard poly-time poly-time
weak unboundedness open problem open problem poly-time
strong optimality co-NP-hard co-NP-hard poly-time
weak optimality open problem open problem open problem

To recall:

(co-)NP-hardness is often interpreted as “only exponential-time or
worse algorithms for the problem exist”, or “the problem is
computationally intractable“ (it is as hard as general integer
programming, Traveling Salesman etc., or even harder).

poly-time (“polynomial computation time”) is often interpreted as
“the problem is computationally tractable even for large instances”.
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Optimal value range and the catastrophic scenario

The optimal value function is defined as

f (A, b, c) = min{cTx : Ax = b, x > 0}

on A× b× c. (For other LP formats the definition is analogous.)

Natural questions:

How to determine f := sup{f (A, b, c) : (A, b, c) ∈ (A,b, c)}?

How to determine (AU , bU , cU ) ∈ (A,b, c) s.t. f (AU , bU , cU) = f ?

Remark. When the objective function cTx measures costs, then
(AU , bU , cU , f ) is the catastrophic scenario: it tells us what can happen in
the worst case, when the cost function attains its highest possible value.
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Optimal value range and the catastrophic scenario (contd.)

Also the opposite extreme (“best case”) is interesting:

How to determine f := inf{f (A, b, c) : (A, b, c) ∈ (A,b, c)}?

How to determine (AL, bL, cL) ∈ (A,b, c) such that f (AL, bL, cL) = f ?

Definition. The pair of (possibly infinite) numbers f , f is called optimal
value range.

Questions.

Can we easily determine the range f , f ?

Can we easily find the extreme scenarios (AU , bU , cU), (AL, bL, cL)?

Not surprisingly, the answer depends on the format of LP.
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Optimal value range and the catastrophic scenario (contd.)

We can extend our table:

format: Ax = b, x > 0 Ax 6 b Ax 6 b, x > 0

strong feasibility co-NP-hard poly-time poly-time
weak feasibility poly-time NP-hard poly-time

strong unboundedness co-NP-hard poly-time poly-time
weak unboundedness open problem open problem poly-time
strong optimality co-NP-hard co-NP-hard poly-time
weak optimality open problem open problem open problem

computing f NP-hard poly-time poly-time
computing f poly-time NP-hard poly-time
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Optimal value range — algorithms

Vajda’s Theorem (1961). For the format Ax 6 b, x > 0 we have

f = min{cTx : Ax 6 b, x > 0},

f = min{cTx : Ax 6 b, x > 0}.

Remark. In this case, computation of the optimal value range is reducible
to traditional LP.

Rohn’s Theorem (2006). For the format Ax = b, x > 0 we have

f = min{cTx : Ax 6 b,Ax > b, x > 0},

f = max{f (Ac − diag(s)A∆, bc + diag(s)b∆, c) : s ∈ {±1}n},

where Ac denotes the center matrix, A∆ denotes the radius matrix and
diag(ξ1, . . . , ξn) denotes the diagonal matrix with diagonal elements
ξ1, . . . , ξn.

Remark. In this case, f is computed by one traditional LP; but for f , we
need to solve 2n traditional LPs. (The NP-hardness results show that we
can expect nothing much better.)
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Optimal value range — algorithms (contd.)

Do we need to investigate different form of interval LP separately?

Yes. Because some forms are tractable, while the others are not.

No. We can put it in a general setting.

The general form of interval LP:

max cTx + dTy s.t. Ax + By = b, Cx +Dy 6 g, x > 0.

Remarks.

Each interval LP can be expressed in this form.

Algorithms for computing f and f are known, but not necessarily
efficient (not necessarily poly-time).
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Optimal value function — continuity

Another natural question. Is the optimal value function
f (A, b, c) = min{cTx : Ax = b, x > 0} continuous on A× b× c?

Answer. In general: no. For example, it can happen that there is a
number f0 s.t. f < f0 < f for which no (A0, b0, c0) ∈ (A,b, c) satisfies
f (A0, b0, c0) = f0.

But under some additional conditions, the answer is positive:

Theorem (Wets, 1985; Mostafaee, Hlad́ık, Černý, 2013). Assume
that for every (A, b, c) ∈ (A,b, c) the following conditions hold:

{x ∈ R
n : Ax = 0, x > 0, cTx 6 0} = {0},

{y ∈ R
m : ATy 6 0, bTy > 0} = {0}.

Then both values f and f are finite and f (A, b, c) is continuous on
A× b× c.
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Application: inverse optimization

Inverse optimization is a task to design a linear program with a
prescribed optimal value, when its coefficients can be chosen from given
intervals.

Example 1: design a network with a prescribed maximal flow, when
capacities of edges can be chosen from given intervals.

Example 2: find a payoff matrix for a matrix game with a prescribed
value of the game, when payoffs can be chosen from given intervals.

We will elaborate on Example 2 in more detail.
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Inverse optimization: designing a matrix game

Given a payoff matrix A for a matrix game, it is well-known that the Nash
mixed strategy for the first player can be found via the linear program

max γ s.t. Ax > γe, eTx = 1, x > 0, (1)

where e = (1, . . . , 1)T.

Observations. Let A be given.

The LP (1) satisfies the assumptions of
Wets-Mostafaee-Hlad́ık-Černý’s Theorem and hence f is continuous.

We have f = max{γ : Ax > γe, eTx = 1, x > 0}.

We have f = max{γ : Ax > γe, eTx = 1, x > 0}.

So, in this case, we know both extreme scenarios.
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Inverse optimization: designing a matrix game

Efficient method for solving the inverse optimization problem —
designing a payoff matrix for a matrix game. Given an interval
matrix A of admissible payoffs and a prescribed value f0 ∈ (f , f ) for the
desired value of the game, we can define the function

Θ(λ) = max{γ : ((1 − λ)A+ λA)x > γe, eTx = 1, x > 0} − f0.

By continuity, Θ has a zero point (using Bolzano’s Intermediate Value
Theorem). This point can be found using the Binary Search technique,
simply iterating over λ ∈ [0, 1].

Applications.

When a casino wants to introduce a matrix game to be played, it is
desirable to setup the payoff matrix to achieve the desired game value
− 1

37 (i.e., the same value as roulette has).

When a casino wants to introduce a matrix game to be played, it is
desirable to determine a fee for playing the game which would lead to
the desired game value − 1

37 .
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Some interesting research problems

Weaken the sufficient conditions for continuity of the optimal value
function f from Wets-Mostafaee-Hlad́ık-Černý’s Theorem. (There are
many examples when the function is continuous but the conditions
are not satisfied.)

The solution to the inverse optimization problem need not be unique.
So, define an ordering “this solution is better than that one” and
design an algorithm for finding the “better” solutions.

The Binary Search technique finds the solution only approximately,
with an arbitrary given precision ε > 0. Find another method which
will find a solution exactly.

Find an estimate on the number of iterations of the Binary Search
technique necessary for achieving a given precision ε > 0. (This
requires an analysis of how “wildly” the optimal value function f can
behave.)
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Some interesting research problems (contd.)
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Dependency problem

Part III. Dependency problem
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Dependency problem

Though the three mentioned formats

(a) min cTx s.t. Ax 6 b,

(b) min cTx s.t. Ax = b, x > 0,

(c) min cTx s.t. Ax 6 b, x > 0

look very general, in fact they require a (sometimes) restrictive condition:
data of the linear program are independent. Said roughly, it means that
data can occur only once in the formulation of an LP.

To illustrate a case when this condition is violated: consider the generic
diet problem, where we have both lower and upper bounds on the content

of fat.
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Dependency problem (Example)

Gothai sep.meat demand

minimize c1x1 + c2x2
subject to:

proteins a11x1 + a12x2 > b1
fat (upper bound) a21x1 + a22x2 6 b2
fat (lower bound) a31x1 + a32x2 > b3

salt a41x1 + a42x2 6 b4
x1 > 0

x2 > 0

Here, we must ensure that it always holds

a21 = a31 and a22 = a32.

The corresponding left-hand coefficients in 2nd and 3rd constraint must
always be the same. We say that they are dependent.
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Dependency problem (contd.)

When turning into the interval setting, it is not appropriate to consider the
entire family of linear programming problems

{min{cTx : Ax 6 b, x > 0} | A ∈ A, b ∈ b, c ∈ c}, (2)

but only a subfamily

{min{cTx : Ax 6 b, x > 0} |

A ∈ A, b ∈ b, c ∈ c s.t. a21 = a31 and a22 = a32}. (3)

However, by our definition, (3) is not an interval linear program!

The interval linear program (2) is called relaxation of (3). The conditions
a21 = a31 and a22 = a32 are called dependency conditions.

M. Černý & M. Hlad́ık (Prague, CZ) Interval Linear Programming 32 / 41



Dependency problem (contd.)

Why are dependencies interesting?

We have almost no theory on interval LPs with dependencies. So,
their investigation is a challenging research problem. (Any ideas are
welcome.)

In fact, almost the only thing we can do is working with the
relaxation.

But this brings a variety of problems: f , f are under/overestimated
and many conditions are weakened. (For example, when the
relaxation is strongly bounded, then also the original ILP with
dependencies is strongly bounded; but this does not hold vice versa.)
The dependency problem is often serious:

it suffices to imagine that we need to use an LP constraint of the form
b 6 aTx 6 b′, or
when we want to rewrite an equality aTx = b as a pair of inequalities
aTx 6 b, aTx > b.

To conclude: we need help! SOS!
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Further results and open problems

Part IV. A brief summary of further results and open problems
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Interesting special case: Basis stability

Definition. The interval LP

min cTx s.t. Ax = b, x > 0 (4)

is basis stable iff there exists a basis B which is optimal for every LP in the
family (4).

Bad news. Testing basis stability is NP-hard.

Good news.

Under basis stability we have an efficient procedure for determining
the optimal value range:

f = min{cTBx : ABxB 6 b,ABxB > b, xB > 0},
f = min{cTBx : ABxB 6 b,ABxB > b, xB > 0}.

Moreover, the set of optimal solutions of LPs in the family (4) is the
polyhedron

{x ∈ R
n : ABxB 6 b,ABxB > b, xB > 0, xnonbasic = 0}.
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Application: linear regression with interval data

Consider the linear regression model

y = Xβ + ε,

where data (X , y) are not observable. Instead we have only intervals
(X, y) containing the unobservable values (X , y).

L1-norm estimator β̂ = argminb‖y − Xb‖1 can be written as a linear
program:

min eTw s.t. Xb − y 6 w , −Xb + y 6 w , w > 0.

Replacement of (X , y) by (X, y) leads to the interval linear program

min eTw s.t. Xb − y 6 w , −Xb + y 6 w , w > 0.

(Note that the dependency problem is present here.)
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Application: linear regression with interval data (contd.)

Illustration of basis stability. Consider the estimated “regression line” as
a classifier which classifies point into two groups: points above the line
and below the line.

Now: the problem is basis stable iff every choice of data (X , y) ∈ (X, y)
leads to the same classification.
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Application: global optimization

Global optimization problem.

minϕ(x) s.t. f (x) = 0, g(x) 6 0, x ∈ x.

Linearization of nonlinearities leads to Interval LP.

min cT x s.t. Ax = 0, Bx 6 0, x ∈ x.

Illustration. Relaxation of two nonlinear functions:

M. Černý & M. Hlad́ık (Prague, CZ) Interval Linear Programming 38 / 41



Interesting open problems

Find necessary and/or sufficient conditions for

weak unboundedness,
strong boundedness,
weak point optimality (given a point x , is it optimal for some LP in the
family?),
weak basis optimality (given a basis B, is it optimal for some LP in the
family?).

Find a method which describes the range of the objective value
function (i.e., the set f (A,b, c)).

In particular, decide whether or not it is an interval.
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Further issues

Further issues studied in interval LP:

approximations of the weak optimal region (= union of optimal
solutions of LPs in the family),

duality in interval LP,

treatment of dependencies,

many further topics.
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Thank You! And... some further reading for evenings...

M. Fiedler, J. Nedoma, J. Raḿık, J. Rohn, and K. Zimmermann.

Linear optimization problems with inexact data.

Springer, New York, 2006.

M. Hlad́ık.

Interval linear programming: A survey.

In Z. A. Mann, editor, Linear Programming - New Frontiers in Theory and

Applications, chapter 2, pages 85–120. Nova Sci. Pub., 2012.

M. Hlad́ık and M. Černý.

Interval regression by tolerance analysis approach.

Fuzzy Sets Syst., 193:85–107, 2012.

A. Mostafaee, M. Hlad́ık, and M. Černý.

Inverse linear programming problem with interval coefficients.

unpublished, 2013.

M. Černý, J. Antoch, and M. Hlad́ık.

On the possibilistic approach to linear regression models involving uncertain,
indeterminate or interval data.

Inf. Sci., 244:26–47, 2013.
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