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Introduction

Interval matrix

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The midpoint and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

Interval linear system

Given A and b, an interval linear system is a family

Ax = b, A ∈ A, b ∈ b,

Its solution set is defined

Σ := {x ∈ R
n | ∃A ∈ A ∃b ∈ b : Ax = b}.
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Introduction

Problem formulation

Find a tight interval enclosure x ⊇ Σ.

Bad news

The problem of computation (or with prescribed accuracy) the best
possible enclosure is NP-hard (Kreinovich and Lakeyev, 1996).

Good news

There are many methods for computing enclosures to Σ:

Fast methods, but sometimes poor enclosures:

Gaussian elimination, Gauss–Seidel or Krawczyk iterations, ε-inflation
(Rump, 1994), Hansen–Bliek–Rohn-Ning-Kearfott method (1999)

Best enclosure, but exponential worst case complexity:

Jansson (1997), Rohn (2005)

Our objective

Fill the gap: Polynomial algorithm yielding tight enclosures.
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Illustration

Example (sometimes this case . . . )

(

[6, 7] [2, 3]
[1, 2] −[4, 5]

)(

x1
x2

)

=

(

[6, 8]
− [7, 9]

)

0.5 1.0−0.5

2.5

1.5

x1

x2
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Illustration II.

Example (. . . and sometimes this case (Barth & Nuding, 1974))
(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

7 14−7−14

7

14

−7

−14

x1

x2
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Shaving method

Our idea

Use shaving approach from CSP area.

x1

x2 α

Form of a slice

Consider a slice x = x(α, i) of an initial enclosure x
0 in the form of

x =

{

x
0
j if j 6= i ,

[x0j − α, x0j ] if j = i ,
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Auxiliaries

Lemma

Let A ∈ R
n×n, b ∈ R

n and x ∈ IR
n. Then the linear system

Ax = b, x ∈ x

has no solution if and only if the linear system

ATw + y − z = 0, bTw + xT y − xT z = −1, y , z ≥ 0 (∗)

is solvable.

Proof.

Consequence of Farkas’ lemma.
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Auxiliaries (cont’d)

A sufficient condition for strong solvability of (∗)

Let w∗, y∗, z∗ be optimal solitions to the linear program

min bTc w + xT y − xT z

subject to AT
c w + y − z = 0, −e ≤ w ≤ e, y , z ≥ 0.

If y∗i = 0, then we fix the variable yi = 0, and the same for z .

Complete

ATw + y − z = 0, bTw + xT y − xT z = −1,

to the square interval linear system

Cv = d , C ∈ C.

Let (v1, v2) be an enclosure of its solution set. If v2 ≥ 0, then (∗) is
strongly solvable.
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Computing the width of a slice

Our problem

Determine a large value of α ≥ 0 such that an enclosure (v1, v2) to

(C + αEij )v = d , C ∈ C,

satisfies v2 ≥ 0.

Solution

Let v an enclosure to Cv = d , C ∈ C. By the Sherman–Morrison formula
for the inverse, we get bounds:

α < −1/C−1
ji ,

α ≤
vk

vjC
−1
ki

− vkC
−1
ji

. ∀k ∈ I : vjC
−1
ki

> vkC
−1
ji .
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Computing the width of a slice (cont’d)

Iterations

The process can be iteration with efficient recomputation of C−1
∗i .

Remark (Computational complexity)

The total computational time is

O(iter · n · (LP + n3)),

where

LP is the running time for the linear program

iter is the number of iterations
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Example

Example

A ∈ A =

(

−[6, 7] [8, 10]
[5, 6] −[1, 3]

)

, b ∈ b =

(

−[10, 11]
[−1, 1]

)

.

The initial enclosure (by the Intlab function verifylss)

x
0 = ([−2.1891, 1.0385], [−3.2972, 0.1329])T

Shaving:

for i = 1: α1 = 0.8521,
for i = 2: α2 = 0.7142, α3 = 0.1669, α4 = 0.0657,
shaving from below inefficient.

The resulting enclosure

x
1 = ([−2.1891, 0.1864], [−3.2972,−0.8139])T .

the interval hull of Σ is

x
3 = ([−2.1579, 0], [−3.2632,−1])T .
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Example (cont’d)

Example

A ∈ A =

(

−[6, 7] [8, 10]
[5, 6] −[1, 3]

)

, b ∈ b =

(

−[10, 11]
[−1, 1]

)

.

1−1−2

−1

−2

−3

0
x1

x2
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Example II.

Example (Random tests)

The entries of Ac and bc randomly in [−10, 10];
all radii are equal to δ > 0.

Results:

n δ time sum prod cuts

5 0.5 0.4977 0.6465 0.07751 18.06
10 0.25 0.9941 0.6814 0.02184 45.06
20 0.05 3.136 0.7161 0.00639 87.77
50 0.025 26.65 0.8071 0.03424 281.9
100 0.01 228.5 0.8693 0.01531 946.3

where

sum :=

∑n
i=1(x

1
∆)i

∑n
i=1(x

0
∆)i

, prod :=

∏n
i=1(x

1
∆)i

∏n
i=1(x

0
∆)i

,

x
0 is the initial box, and x

1 the computed one.
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Conclusion and future work

Conclusion

Shaving method for solving interval linear equations presented.

Compromise between time and accuracy:
polynomial time complexity, but tighter enclosures.

Future work

Implementation of an efficient parallelization.

Adaptation to parametric interval linear systems.
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Thank you for your attention!
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