A shaving method for interval linear systems of equations

Milan Hladík Jaroslav Horáček

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

> PPAM 2013, Warsaw September 8-11

Introduction

Interval matrix

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \}.$$

The midpoint and radius matrices

$$A_c := rac{1}{2}(\overline{A} + \underline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

Interval linear system

Given A and b, an interval linear system is a family

$$Ax = b$$
, $A \in \mathbf{A}$, $b \in \mathbf{b}$,

Its solution set is defined

$$\Sigma := \{ x \in \mathbb{R}^n \mid \exists A \in \mathbf{A} \exists b \in \mathbf{b} : Ax = b \}.$$

Introduction

Problem formulation

Find a tight interval enclosure $\mathbf{x} \supseteq \boldsymbol{\Sigma}$.

Bad news

The problem of computation (or with prescribed accuracy) the best possible enclosure is NP-hard (Kreinovich and Lakeyev, 1996).

Good news

There are many methods for computing enclosures to Σ :

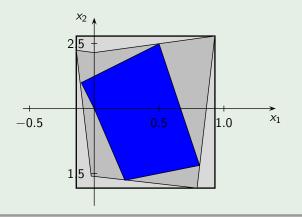
- Fast methods, but sometimes poor enclosures:
 - Gaussian elimination, Gauss-Seidel or Krawczyk iterations, ε-inflation (Rump, 1994), Hansen-Bliek-Rohn-Ning-Kearfott method (1999)
- Best enclosure, but exponential worst case complexity:
 - Jansson (1997), Rohn (2005)

Our objective

Fill the gap: Polynomial algorithm yielding tight enclosures.

Example (sometimes this case ...)

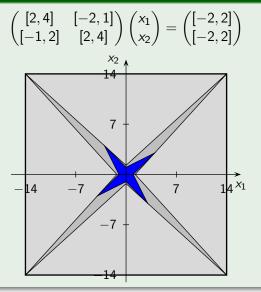
$$\begin{pmatrix} [6,7] & [2,3] \\ [1,2] & -[4,5] \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} [6,8] \\ -[7,9] \end{pmatrix}$$



M. Hladík (CUNI)

Illustration II.

Example (... and sometimes this case (Barth & Nuding, 1974))



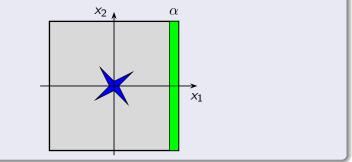
M. Hladík (CUNI)

Shaving method for interval linear equations

Shaving method

Our idea

Use shaving approach from CSP area.



Form of a slice

Consider a slice $\mathbf{x} = \mathbf{x}(\alpha, i)$ of an initial enclosure \mathbf{x}^0 in the form of

$$\mathbf{x} = \begin{cases} \mathbf{x}_j^0 & \text{if } j \neq i, \\ [\overline{\mathbf{x}}_j^0 - \alpha, \overline{\mathbf{x}}_j^0] & \text{if } j = i, \end{cases}$$

Lemma

Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{IR}^n$. Then the linear system

$$Ax = b, x \in \mathbf{x}$$

has no solution if and only if the linear system

$$A^{\mathsf{T}}w + y - z = 0, \quad b^{\mathsf{T}}w + \overline{x}^{\mathsf{T}}y - \underline{x}^{\mathsf{T}}z = -1, \quad y, z \ge 0 \qquad (*)$$

is solvable.

Proof.

Consequence of Farkas' lemma.

Auxiliaries (cont'd)

A sufficient condition for strong solvability of (*)

• Let w^*, y^*, z^* be optimal solitions to the linear program

$$\begin{array}{l} \min b_c^T w + \overline{x}^T y - \underline{x}^T z \\ \text{subject to} \quad A_c^T w + y - z = 0, \ -e \leq w \leq e, \ y, z \geq 0. \end{array}$$

If y_i^{*} = 0, then we fix the variable y_i = 0, and the same for z.
Complete

$$A^T w + y - z = 0, \quad b^T w + \overline{x}^T y - \underline{x}^T z = -1,$$

to the square interval linear system

$$Cv = d, \quad C \in \mathbf{C}.$$

• Let $(\mathbf{v}^1, \mathbf{v}^2)$ be an enclosure of its solution set. If $\underline{v}^2 \ge 0$, then (*) is strongly solvable.

Our problem

Determine a large value of $\alpha \geq 0$ such that an enclosure $(\mathbf{v}^1, \mathbf{v}^2)$ to

$$(C + \alpha E_{ij})v = d, \quad C \in \mathbf{C},$$

satisfies $\underline{v}^2 \ge 0$.

Solution

Let **v** an enclosure to Cv = d, $C \in \mathbf{C}$. By the Sherman–Morrison formula for the inverse, we get bounds:

$$\begin{split} \alpha &< -1/\underline{C_{ji}^{-1}},\\ \alpha &\leq \frac{\underline{\nu}_k}{\overline{\mathbf{v}_j \mathbf{C}_{ki}^{-1}} - \underline{\nu}_k \underline{C_{ji}^{-1}}}, \quad \forall k \in I: \overline{\mathbf{v}_j \mathbf{C}_{ki}^{-1}} > \underline{\nu}_k \underline{C_{ji}^{-1}}. \end{split}$$

Computing the width of a slice (cont'd)

Iterations

The process can be iteration with efficient recomputation of C_{*i}^{-1} .

Remark (Computational complexity)

The total computational time is

$$\mathcal{O}(iter \cdot n \cdot (LP + n^3)),$$

where

- LP is the running time for the linear program
- iter is the number of iterations

Example

Example

$$A \in \mathbf{A} = egin{pmatrix} -[6,7] & [8,10] \ [5,6] & -[1,3] \end{pmatrix}, \quad b \in \mathbf{b} = egin{pmatrix} -[10,11] \ [-1,1] \end{pmatrix}.$$

- The initial enclosure (by the Intlab function verifylss) $\mathbf{x}^{0} = ([-2.1891, 1.0385], [-3.2972, 0.1329])^{T}$
- Shaving:
 - for i = 1: $\alpha_1 = 0.8521$,
 - for i = 2: $\alpha_2 = 0.7142$, $\alpha_3 = 0.1669$, $\alpha_4 = 0.0657$,
 - shaving from below inefficient.
- The resulting enclosure

$$\mathbf{x}^{1} = ([-2.1891, 0.1864], [-3.2972, -0.8139])^{T}.$$

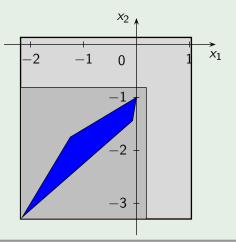
 $\bullet\,$ the interval hull of $\Sigma\,$ is

$$\mathbf{x}^3 = ([-2.1579, 0], [-3.2632, -1])^T$$

Example (cont'd)

Example

$$A \in \mathbf{A} = \begin{pmatrix} -[6,7] & [8,10] \\ [5,6] & -[1,3] \end{pmatrix}, \quad b \in \mathbf{b} = \begin{pmatrix} -[10,11] \\ [-1,1] \end{pmatrix}.$$



M. Hladík (CUNI)

Example II.

Example (Random tests)

• The entries of A_c and b_c randomly in [-10, 10]; all radii are equal to $\delta > 0$.

Results:

п	δ	time	sum	prod	cuts
5	0.5	0.4977	0.6465	0.07751	18.06
10	0.25	0.9941	0.6814	0.02184	45.06
20	0.05	3.136	0.7161	0.00639	87.77
50	0.025	26.65	0.8071	0.03424	281.9
100	0.01	228.5	0.8693	0.01531	946.3

where

$$\texttt{sum} := \frac{\sum_{i=1}^{n} (x_{\Delta}^{1})_{i}}{\sum_{i=1}^{n} (x_{\Delta}^{0})_{i}}, \quad \texttt{prod} := \frac{\prod_{i=1}^{n} (x_{\Delta}^{1})_{i}}{\prod_{i=1}^{n} (x_{\Delta}^{0})_{i}},$$

 \mathbf{x}^0 is the initial box, and \mathbf{x}^1 the computed one.

M. Hladík (CUNI)

Conclusion

- Shaving method for solving interval linear equations presented.
- Compromise between time and accuracy: polynomial time complexity, but tighter enclosures.

Future work

- Implementation of an efficient parallelization.
- Adaptation to parametric interval linear systems.

Thank you for your attention!