
On Approximation of the Best Case Optimal Value in

Interval Linear Programming

Milan Hlad́ık 1,2 Michal Černý 2
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. . . intervals

Motivation

Interval data are used to model:

real life uncertainties

measurement errors

sensitivity analysis

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

M. Hlad́ık and M. Černý (CUNI, VŠE) Best Case Approximation in Interval LP January 19–22, 2013 2 / 18



Interval linear equations

Interval linear equations

Let A ∈ IR
m×n and b ∈ IR

m. The family of systems

Ax = b, A ∈ A, b ∈ b.

is called interval linear equations and abbreviated as Ax = b.

Solution set

The solution set is defined

{x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Enclosure

x ∈ IR
n containing the solution set.

Methods

Interval Gaussian elimination, interval Gauss–Seidel, Krawczyk method,
Hansen–Bliek–Rohn method, . . .
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Interval linear equations

Example (Barth & Nuding, 1974))
(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

7 14−7−14

7
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−7

−14
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x2

M. Hlad́ık and M. Černý (CUNI, VŠE) Best Case Approximation in Interval LP January 19–22, 2013 4 / 18



Interval linear equations

Example (typical case)

(

[6, 7] [2, 3]
[1, 2] −[4, 5]

)(

x1
x2

)

=

(

[6, 8]
− [7, 9]

)

0.5 1.0−0.5

2.5

1.5

x1

x2
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Interval linear programming

Interval linear programming

Consider a family of linear programming problems

min cT x subject to Ax ≤ b, (⋆)

where A ∈ A, b ∈ b, c ∈ c.

Remark

There is loss of generality assuming the form (⋆).

For instance, transformation of

min cT x subject to Ax = b, x ≥ 0

to
min cT x subject to Ax ≤ b, −Ax ≤ −b, x ≥ 0

causes dependencies.
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Problem statement

State of the art

optimal value range (Chinneck & Ramadan, 2000, Hlad́ık, 2009,
Jansson, 2004, Mráz, 1998, Rohn, 2006, etc.)

duality (Gabrel & Murat, 2010, Rohn, 1980, Serafini, 2005)

basis stability (Beeck, 1978, Końıčková, 2001, Hlad́ık, 2012, Rohn,
1993)

optimal solution set (Beeck, 1978, Jansson, 1988, Machost, 1970)

The best and worst case optimal values

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.
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The worst case optimal value

Algorithm (The worst case optimal value)

1 Compute

ϕ = sup bT y subject to A
T
y ≤ c , −AT y ≤ −c, y ≤ 0.

2 If ϕ = ∞, then set f := ∞ and stop.
3 If the system

Ax1 − Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0

is feasible (i.e., each realization of the original system is feasible),
then set f := ϕ; otherwise set f := ∞.

Corollary

We compute f by solving two linear programs.
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The best case optimal value

Theorem (Gabrel & Murat, 2010)

Computing the best case optimal value

f = min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c

is strongly NP-hard even in the class of problems with interval objective

function coefficients and real constraint coefficients.

Proposition

We can put

b := b.

Proof.

Ax ≤ b implies Ax ≤ b for any A ∈ A and b ∈ b.
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The best case optimal value

Proposition (Computation of f )

We have

f = min
s∈{±1}n

fs ,

where

fs = min(cc − diag(s) c∆)
T x

subject to (Ac − A∆ diag(s))x ≤ b, diag(s) x ≥ 0.

Remarks

It requires solving 2n linear programs.

If variables are a priori non-negative, then just one LP.

It suffices to inspect orthants with feasible solutions only.
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Upper bound on f

Definition (Feasible set)

F := {x : ∃A ∈ A : Ax ≤ b}

Algorithm (Upper bound on f )

1 Start with the orthant corresponding to f (Ac , b, cc ).
2 Then check the neighboring connected orthants.

Proposition

The algorithm computes f provided F is connected.

Example

The feasible set to

[−1, 1]x + y ≤ −1, y ≤ 0, −y ≤ 0

consists of two disjoint sets (−∞,−1]× {0} and [1,∞) × {0}.
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Connectivity of F

Proposition

If b ≥ 0, then F is connected.

Proof.

0 ∈ F , so F is connected via the origin.

Proposition

If the linear system of inequalities

Au − Av ≤ b, u, v ≥ 0 (⋆)

is feasible, then F is connected.

Proof.

If u, v solves (⋆), then x∗ := u − v solves Ax ≤ b for every A ∈ A.
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Another upper bound on f

Algorithm (Another upper bound on f )

1 Put A := Ac , c := cc .
2 Let x∗ be a solution to f ∗ := f (A, b, c)
3 Put s := sgn(x∗).
4 Let xs be a solution to

f s ≡min(cc − diag(s) c∆)
T x

subject to (Ac − A∆ diag(s))x ≤ b.

5 Update f ∗ := min(f ∗, f s).
6 Put s := sgn(xs).
7 Go to step 3. (repeat while f ∗ improves)
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Lower bound on f

Algorithm (Lower bound on f )

1 Let B be an optimal basis corresponding to f (Ac , b, cc ).
2 Let y be an enclosure to the interval linear system

AT

B y = c , c ∈ c, AB ∈ AB .

3 Provided y ≤ 0, we have a lower bound

bTB y
∗ ≤ f ,

where y∗
i
= y

i
if bBi

≥ 0, and y∗
i
= y i otherwise.

Proof.

y ≤ 0 implies that B is an optimal basis of the dual problem, so it gives a
lower bound on the primal objective.
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Example

Example

min 1x1 + 2x2 subject to





−[4, 5] −[2, 3]
[4, 5] −[1, 2]
[2, 3] [5, 6]





(

x1
x2

)

≤





−[11, 12]
[26, 28]
[43, 45]





2 4 6 8 10−2−4−6−8

3

6

9

12

−3

−6

x1

x2
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Example

Example

Results:

The exact best case optimal value

f = −9.6154.

Optimal solution for the selection A := Ac , c := cc :

x∗ = (4.8056, −4.2500)T , f ∗ = −3.6944.

Optimal solution in the orthant s = (1,−1):

xs = (5.1538, −7.3846)T , f s = −9.6154.

Enclosure to the dual system AT

B
y = c , AB ∈ AB , c ∈ c:

y = ([−0.8340,−0.3326], [−0.6536,−0.0686])T

which yields a lower bound −14.6402.
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Conclusion and future work

Conclusion

Not necessarily exponential algorithm for f .

Lower and upper bounds for f .

By duality in LP, we have analogous results for the worst case of

min cT x subject to Ax = b, x ≥ 0,

where A ∈ A, b ∈ b, c ∈ c.

Future work

Improve the lower bound on f .

Extension to more complex forms
(mixed equations and inequalities, . . . )

Handling dependencies.
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