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Introduction

Part |I. Introduction

@ What is optimization?

@ Applications in Operations Research, Economics, Statistics, Game
Theory, ...

@ Inverse optimization
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What is optimization?

@ In mathematics: optimization is a theory on maximization or
minimization of functions defined on special sets.

o

We are given an objective function f : R” — R which is to be
maximized /minimized over a given region Q C R", called feasible
region.

@ In applications: we are always maximizing or minimizing something,
for example:

o

Microeconomics: we want to maximize profit of a firm or minimize its
costs under limited resources;

Statistics: we want to maximize likelihood or minimize residual error
(e.g. residual sum of squares);

Experimental Design: we want to maximize measurement precision in
an experiment under restricted possibilities of available laboratory
equipment;

Portfolio Theory: we want to maximize return of an investment under
budget constraints and regulatory constraints;

Operations Research: we want to minimize the length of the path of
the Traveling Salesman;

many more applications in engineering, physics, chemistry etc.
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A basic example: Nutrition (Diet) Problem

In practice, this problem is solved e.g. by producers of dog food, often on
a daily basis.

@ A producer of dog food processes leftovers from butchers,
slaughterhouses and meat-processing plants.

@ The producer must combine the available raw materials to achieve
the declared nutrition content, e.g. enough proteins, enough calories,
not too much salt, not too much fat etc.

@ The producer does not care about what the ingredients exactly are:

(s)he simply buys anything from which it is possible to combine the

declared nutrition levels, as cheaply as possible,

(s)he mixes and boils the raw materials, getting a homogenous

tasteless mesh,

(s)he adds meat perfume,

(s)he fills the ‘product’ into cans,
(s)he adds one piece of real meat just under the cover of each can (for

a better visual effect),
@ (s)he spends plenty of money on marketing to be able to sell this stuff.

©
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A basic example: Nutrition Problem (continued)

For example assume that a meat processing plant offers two kinds of
leftovers:
@ x; = leftover of salami,

@ xp = mechanically separated meat.

Now we can summarize data for our problem: we know the contents of
proteins, fat, and salt in each of the two ingredients xj, xo, and we know
their prices per ton.

Our goal. We want to mix them to obtain dog food containing at least
a declared level of proteins, at most a declared level of fat and at most
a declared level of salt. Furthermore, we want to minimize costs.
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A basic example: Nutrition Problem (continued)

We get the following optimization problem:

salami sep.meat demand
minimize Cc1x1 + CoXo
subject to:

proteins aiixy + a12Xo > b1
fat a1xy  +  anxy < b>
salt asixy -+ azo X < bs
X1 = 0
X2 Z 0

Data of the optimization problem are denoted in red:

@ a;; denote the contents of proteins, fat, salt in one tone of salami and
separated meat,

@ b; denote the demands,

@ ¢; denote the prices per ton of salami and separated meat.
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Examples of optimization problems — nonlinear case

@ Portfolio optimization. Data: C, r, . Find a portfolio with average
yield > ~ and minimal variance:

mlnxTCx s.t. Zx,—lx OZr,x,/

@ Logistic regression. Data: observed pairs [x1, y1],. .., [Xn, ¥n]. Find
least-squares estimates of regression parameters (51, 82, 83:

n IB 5

i 1

/6’1%283 — [y’ B m] st. $1>0,53 >0.
=

@ Smallest-volume circumscribing ellipsoid. Data: points
X1,...,Xp € R". Solve

min _ detE st. (Vi) (x; —s)TE"*(x; —s) <1, E p.sd.
EcRXn scRn
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Inverse optimization

Part Il. Inverse optimization

@ General formulation
@ Questions and problems
@ Optimal value function

@ Applications
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General formulation

Let © C R (admissible region) be given. Consider the class of
optimization problems

min{o(x;0) : g1(x;0) <0, ..., gm(x;0) <0, xeR"} 00O, (1)

where
@ x € R" : vector of variables,
@ O € RX: data vector,
o p:R"x Rk — R: objective function,
® gi,...,8m : R" x RK — R: constraint functions.

When we fix 6y € ©, we say that we select the scenario g, or, that we
select the optimization problem

min¢(x; 6p) s.t. gi1(x;60) <0, ..., gm(x;6p) <O

from the family (1).
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General formulation

Inverse optimization problem: given \g € R, find 6y € © such that
mXin{gp(x;ﬁo) ©g1(x;00) <0, ..., gm(x;00) <0} =X
or assert that none exists.

Interpretation. The data of the inverse optimization problem consist of
the functions ¢, g1, ..., &m, the set © and the value Ag, called demand.
We can say that we are to ‘design’ an optimization problem

min{(x; 60) : g1(x;00) <O, ..., gm(x; ) < O}

(or: ‘select a scenario’) attaining the prescribed optimal value \g. Our
constraints are that we are allowed to select the parameter vector 8y only
from the admissible set ©.
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Special case: Inverse linear programming

o Traditional linear programming.
o Data: Ac R™" pbeR™ ceR".
o Task: Find x € R” solving mincTx s.t. Ax = b, x > 0.
@ Inverse linear programming.
o Data: © CR™" x R™ x R" and \g € R.
o Task: Find (A, b, c) € © such that min{cTx: Ax = b,x > 0} = Ao.
@ Inverse linear programming with interval coefficients.
o Data: A cIR™", becIR™, ceIR" and X\ € R.
@ Task: Find (A, b,c) € © := (A, b,c) such that
min{cTx: Ax=b,x >0} = Ao.
o Here: IR™*" is the space of all interval matrices. An interval matrix is
a family of matrices

A=[AA = {AcR™": A< A<A),

where “<" is understood componentwise.

M. Hladik & M. Cerny (Prague, CZ) Inverse Linear Programming



Questions and problems

From now on: we will study only the case of inverse LP with interval
coefficients (“IILP"). Of course, the questions and problems apply more
generally.

Solution space. Let ©* denote the set of solutions to IILP, i.e.

©* = {(A,b,c) € (A,b,c): min{c'x:Ax=b,x>0} =X}

Some natural questions.

@ Can we test whether ©* # ()7 (l.e., can we test whether the problem has at least
one solution?) Can we decide by an efficient algorithm (i.e., in polynomial time),
or is the problem computationally hard (say, NP-hard)?

@ Can we test whether © is a singleton? (l.e., can we test uniqueness of the
solution?)

@ How to find some 0" € ©*7
@ How to describe or approximate the set ©™ if it is intricate?

@ How to determine further set-theoretic properties of ©*, such as connectivity,
(un)boundedness etc.?
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Questions and problems (contd.)

Optimal value function:
f(A, b,c) =inf{cTx: Ax = b,x > 0}.

Remark.
@ f(A, b,c) = —oo means that the scenario (A, b, ¢) is unbounded.
@ f(A, b, c) = co means that the scenario (A, b, ¢) is infeasible.
Some natural questions:
@ Is the optimal value function f continuous on A x b x c?
@ Is the optimal value function f monotone on A x b x c?
@ Does it hold f(A, b, c) = oo for some A, b, c?
@ Does it hold (A, b, c) = —oco for some A, b, c?
°

More generally: how to describe the range of f(A, b, c) over the
domain A x b x c?
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Two applications

Example 1. Finding a maximal flow in a network can be written as a
linear programming problem.
@ Data: capacities of edges.

@ |ILP: given possible intervals for capacities of edges, find the
capacities in order to achieve the prescribed maximal flow.

Example 2. Designing a matrix game.
@ Data: payoff matrix.
@ |ILP: given an interval of admissible payoff matrices, find the payoff
matrix with a prescribed value of the game.
@ Remark. Recall that finding the Nash mixed strategy can be solved
via the linear program

maxy s.t. Ax = ve,x =0, elx =1,

’Y7X

where e = (1,...,1)T and A is the payoff matrix.
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Some theory of IILP

Part Ill. Some theory of IILP

@ Continuity of the optimal value function
@ Binary Search

@ Parametric programming
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Some theory of IILP

Two observations:

@ The optimal value function f(A, b,c) = min{ctx : Ax = b,x > 0} is
computable in polynomial time (“easy-to-evaluate”), using e.g.
Interior Point Methods.

@ The admissible space © = A x b X c is a convex set.

Crucial questions:
@ Is the optimal value function f continuous?

o Given g,
@ (lower bound): can we find a scenario (Ao, by, cy) € (A, b, c) such that

f(Ao, bo, Co) < /\0?
@ (upper bound): can we find a scenario (A1, b1, c1) € (A, b, c) such that

f(Al, bl, Cl) > )\0?
If all answers are positive, we can use Binary Search: by convexity of

A x b x c we can define
v(p) = (1 — p)Ao + pAr, (1 — p)bo + pbr, (1 — p)co + pcr) — Ao

and using fast computability we simply find its root over p € [0, 1].
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To recall:

v(p) = f((1 — p)Ao + pAr, (1 — p)bo + pbr, (1 — p)co + per) — Ao.
Binary Search:
(1) input: precision parameter ¢ > 0, Ao, (Ao, bo, ¢0), (A1, b1, c1).
(2) set p:=0,n:=1
(3) set 1’ = 3(u +7)
(4) if [v(i) — Xo| <  then return the scenario ((1 — 1/)Ao + 1/ A1,
(1 — )b + p'b1, (1 — p')co + 1) and terminate
(5) if v(p') < Ao then set 1 := i/
(6) if v(u') > Ao then set 1w := 1/
(7) go to 3.
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Is the optimal value function continuous?

Problem: the optimal value function
f(A, b,c) = min{cTx : Ax = b,x > 0} need not be continuous.

Theorem. If every scenario (A, b, c) € (A, b, c) satisfies
(a) {x: Ax=0,x>0,c"x <0} = {0},

(b) {y: ATy <0,b"y >0} = {0},

then f is continuous.

Theorem. The condition (a) is satisfied iff the linear programming
problem
Ax <0, Ax>0, x>0, c'x <0, ) x =1

is infeasible.

Corollary. Testing whether (a) holds can be done in polynomial
computation time.

Unfortunately: Testing (b) is NP-hard. But this would be another story...
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A drawback of Binary Search

Binary Search finds the desired scenario only approximately (depending on
the precision parameter £ > 0), meaning that it can make a significant
error:

correct scenario (A, b, ¢) found

scenario by Binary Search
U(O) (A*,b*,c*) y Y
| 14
0 1/2 1
-
“far77
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Parametric programming technique

To recall: an index set B = {i1,...,in} is a basis if Ag is nonsingular.
(If aj is i-th column of A, then Ag has columns aj,, ..., a;,.)

Roughly: a basis B is optimal if x = Aglb is an optimal solution of the
linear programming problem min{cTx : Ax = b,x > 0}.

We denote R := {1,...,m} \ B and write Ag accordingly.

A well-known theorem from LP. A basis B is optimal iff the following
conditions hold:

o feasibility condition: Ag'b >0,
@ optimality condition: cg — cBAglAR > 0.
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Parametric programming technique (contd.)

The main ingredient — “a shift from scenario A(ko), b(ko), c(ko) to
scenario A(rk1), b(k1), c(k1)”.
@ Assume that A, b, ¢ depend on a parameter x and write
A(k), b(k), c(k).
@ Let kg < k1 be given. Let B be an optimal basis for
min{c(xo) ' x : A(ko)x = b(kg),x = 0}.
@ Find

k* = min{k1,sup{x : B is an optimal basis for
min{c(r)Tx : A(k)x = b(k),x > 0}}}. (2)

(Remark: we find the maximal k such that both the feasibility
condition A(k)z'b(x) = 0 and the optimality condition
c(k)r — c(rx)gA(k) 5 A(k)r = 0 hold.)

o If k* < k1, then min{c(k*)Tx : A(k*)x = b(k*),x > 0} must have
another optimal basis B. So, find it and repeat (2). Stop when
K* = K1.
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Parametric programming technique (contd.)

Crucial issue: how to find k* = sup{x : B is an optimal basis for
min{c(x)Tx : A(k)x = b(k),x > 0}}?

Without details: we have the following theorem.
o If A(k) = A, b(k) =band c(k) = (1 — k) + K¢y, then £* can be
found in polynomial time.
o If A(k) = A, b(k) = (1 —k)bg + b1 and c(k) = ¢, then k* can be
found in polynomial time.
@ Rank-one lemma: If A(k) = Ao + kA*, where A* has rank one,
b(k) = b and ¢(k) = ¢, then k* can be found in polynomial time.
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Parametric programming technique (contd.)

Now we can roughly describe the parametric programming method.

@ Let the optimal value function be continuous.
o Let (Ao, bo, co) be a scenario s.t. min{cy x : Agx = bg, x = 0} < Xo.
o Let (A1, b1, c1) be a scenario s.t. min{c{fx : Ajx = by, x = 0} > \o.
@ Stage |. Set A= Ag, b= by, c = (1 — k)cp + kcy and shift

(Ao, bo, Co) — (AQ, bo, Cl).
o Stage Il. Set A= Ag, b= (1 — k)b + kb1, ¢ = ¢1 and shift

(Ao, bo, c1) = (Ao, b1, c1).
@ Stage Il

o Choose a rank-one decomposition: choose a sequence of rank-one
matrices AT, ..., A; such that Ag + A7 +--- A} = A;.
o Make shifts

(Ao, bl,Cl) — (Ao +AT. bl., Cl) — (Ao + AT +A;. bl,Cl) —
— s = (Ao—FA)ik—FA;—F'"—FAz,bl,Cl):(Al,bl,cl).
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Conclusions: pros and cons

Binary Search:
@ (+) in practice: often fast
@ (—) only e-exact solution is found

@ (—) it is hard to find a theoretical bound on the number of iterations
to achieve e-convergence

Parametric Programming Approach:
@ (—) in practice: usually slower than Binary Search
@ (+) exact solution is found
@ (+) more flexible (a user can choose what will be perturbed first)

@ (—) worst-case complexity can be bad (similar to the Simplex
Algorithm)

Both approaches:
@ (—) continuity of the optimal value function is required

@ (—) a-priori knowledge of (Ao, by, cp) and (A, b1, c1) is required
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Thank You! And... some further reading...

@ M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, and K. Zimmermann.
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Inverse linear programming problem with interval coefficients.
unpublished, 2013.

M. Cerny, J. Antoch, and M. Hladik.

On the possibilistic approach to linear regression models involving uncertain,
indeterminate or interval data.

Inf. Sci., 244:26—47, 2013.

M. Hladik & M. Cerny (Prague, CZ) Inverse Linear Programming



