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Abstract. We study the tolerance-based approach to possibilistic nonlinear regression models with interval

data. We provide a method for determination of interval regression parameters of the model for the crisp

input – interval output case and for the interval input – interval output case. We define two classes of

nonlinear regression models for which efficient algorithms exist. We illustrate the theory by examples.
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1. Introduction

Nonlinear regression is a fundamental tool in data analysis. In this text we address the tolerance approach

to possibilistic nonlinear regression, which is a natural generalization of the same concept used in linear re-

gression (Hladı́k and Černý, 2010; Hladı́k and Černý, 2011). Possibilistic interval regression was pioneered

by (Tanaka, Uejima and Asai, 1987; Tanaka, 1987) in the field of linear regression, and later extended to

nonlinear regression (Hao, 2009; Hwang, Hong and Seok, 2006; Jen, Chuang and Su, 2003; Lingras and

Butz, 2011; Xu, Luo, Xu and Zhang, 2009), mostly by means of support vector machine. Possibilistic re-

gression was successfully applied in economic forecasting (Lin, Hung and Wu, 2011), system identification

(Kaneyoshi, Tanaka, Kamei and Furuta, 1990), speech learning systems (Liu, 2009), or analytic hierarchy

process (Entani and Inuiguchi, 2010), among others.

In this text we propose a very general framework for classification of nonlinear regression models which

allows us to construct algorithms for computing their possibilistic interval regression parameters. This is

useful in particular in case when data to be modeled are of interval nature.

The paper is organized as follows. First we review the notion of possibilistic regression, used in linear

regression, and provide a formulation suitable for nonlinear regression models with both crisp input and

crisp output data. Then we continue to models involving interval data; in particular, we distinguish crisp

input – interval output models and interval input – interval output models. In Section 1.1 we review some

examples of nonlinear regression functions widely used applications and in Section 2 we provide a certain

general classification framework for nonlinear regression functions. Finally, in Section 3, we state the main

problem and design the tolerance-based procedure for computation of interval regression parameters for the

classes of functions defined in Section 2.
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In this text, a regression function is simply a continuous function

f(x, θ) = f(x1, . . . , xm; θ1, . . . , θp),

where x1, . . . , xm are data variables and θ1, . . . , θp are parameters.

Given a dataset of n observations of the form

(yi;xi∗) = (yi;xi1, . . . , xim), i = 1, . . . , n,

the possibilistic regression seeks for interval parameters

[θ, θ] = [θ1, θ1], . . . , [θp, θp] (1)

such that

∀i ∈ {1, . . . , n} ∃θ ∈ [θ, θ] s.t. f(xi∗, θ) = yi.

If the condition is satisfied for a given i, we say that i-th observation is covered. (Outside data analysis, the

problem is sometimes referred to simply as “covering problem” or “envelopment problem”.)

Of course, the problem of “finding the interval parameters (1)” must be stated more precisely. Usually

we want the find the intervals as narrow as possible such that all observations are covered. But that is a

multi-criteria optimization problem. The tolerance approach is a natural (but not the only possible) method

of conversion of the multi-criteria problem to a single-criterion problem. Details of the approach will be

discussed in Section 3. As shown in (Hladı́k and Černý, 2011) (where possibilistic linear regression is

studied), the approach has several interesting theoretical properties.

Before we turn into theory, we review some examples of nonlinear regression functions useful in various

fields of science and engineering.

1.1. EXAMPLES OF USEFUL NONLINEAR REGRESSION FUNCTIONS

We sketch only a few examples; more on applications of nonlinear models can be found in (Ratkowski,

1988; Seber and Wild, 2003).

Example. Nonlinear regression functions are often solutions to differential equations describing pro-

cesses in physics, chemistry or biology. An interesting example is the class of growth curves describing the

growth of populations. The Richard’s Growth Equation ((Seber and Wild, 2003), p. 332) has a solution

f(x; θ1, θ2, θ3, θ4) = θ1 · (1 + (θ4 − 1)e−θ2(x−θ3))1/(1−θ4),

which is known as the Richard’s Curve. This model has interesting special cases: setting θ4 = 2 we get the

logistic curve

f(x; θ1, θ2, θ3) =
θ1

1 + e−θ2(x−θ3)
, (2)

the limit case θ4 → 1 yields the Gompertz Curve

f(x; θ1, θ2, θ3) = θ1 · e
−e−θ2(x−θ3)

(3)

and the special case with θ4 = 0 is the model of growth with exponential slow-down

f(x; θ1, θ2, θ3) = θ1 · (1− e−θ2(x−θ3)). (4)
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Example. The submodel of the Logistic Model (2)

f(x; θ2, θ3) =
1

1 + e−θ2(x−θ3)
, [θ1 ≡ 1] (5)

(and similarly with other growth models) is often used when y is interpreted as the probability of an event,

where the probability grows with x. For example, we can consider x = pressure and y = probability that the

device or material under investigation will be damaged by the pressure. Another example: y can measure

the response of a patient to the quantity of drug x.

Example. Another interesting example is the problem of estimation of the degree of polynomial:

f(x; θ1, θ2, θ3) = θ1 + θ2x+ θ3x
θ4 . (6)

Example. Berry’s Model (Berry, 1967) describes the crop yield as a function of density of planting (or,

equivalently, the area available to each plant). Let x1 be the distance between plants in a row and x2 the

distance between rows of plants. Berry used a model of the form

f(x; θ1, θ2, θ3, θ4) =

(
θ1 + θ2

(
1

x1
+

1

x2

)
+

θ3

x1x2

)
−θ4

. (7)

Example. In physics, the simple oscillation model is important:

y = θ1e
−θ2x cos(θ3x). (8)

Example. An important class of nonlinear models is the class of models involving a structural change.

The basic example is continuous connection of two lines:

f(x; θ1, θ2, θ3, θ4) =

{
θ1 + θ2x for x ≤ θ4,

θ1 + θ4(θ2 − θ3) + θ3x for x > θ4.
(9)

1.2. NOTATION

Let A∗ denote the closure of a set A ⊆ Rn. Given an interval a ⊆ R ∪ {±∞}, the numbers a and a denote

its lower and upper boundary points, respectively, and ac and a∆ denote its center and radius, respectively.

That is, a∗ = [a, a] = [ac − a∆, ac + a∆]. Given a function f and a set A, the symbol f(A) denotes the

image of A under f . In particular, f(a) stands for the image of an interval a.

2. Classes of Nonlinear Regression Models

In order to solve interval nonlinear regression problems, we have to know how to compute image of a

function over intervals. Formally, we consider a class of functions equipped by algorithms for determining

their images.

Definition 1. Let

(f1, f
L
1 , f

U
1 ), . . . , (fK , fL

K , fU
K) (10)

be a set of triples, where for all k = 1, . . . ,K:
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− fk : R → R is a continuous function,

− fL
k (x, x) is an algorithm computing fk([x, x])

∗,

− fU
k (x, x) is an algorithm computing fk([x, x])∗.

(a) The set (10) is called basis.

(b) The smallest class of functions (of any number of variables)

• containing constants and the identity function,

• containing the functions f1, . . . , fk and +,−,×,÷ and

• being closed under composition and restriction of domain

is called functional universum and is denoted as U .

Determining the image of a function is a fundamental problem of interval analysis (Moore, Kearfott and

Cloud, 2009) and by far not trivial. Indeed, only for certain functions we can do it efficiently.

ARITHMETIC EXPRESSIONS

Interval arithmetic is defined naturally as an image of values over interval domains (Moore, Kearfott and

Cloud, 2009). Let a and b be real intervals. Then

a+ b = [a+ b, a+ b],

a− b = [a− b, a− b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a÷ b = [min(a÷ b, a÷ b, a÷ b, a÷ b),max(a÷ b, a÷ b, a÷ b, a÷ b)].

Given an aritmetic expression E for a function f , we can evaluate E by using interval arithmetic. As long

as each interval parameter appears at most once in E , then the result equals the image of f . Otherwise, we

obtain only an enclosure (a superset) of the image. For example, consider the function

f(x, y) = xy − 2x

with x ∈ [1, 2] and y ∈ [3, 4]. Evaluating by interval arithemtic leads to the enclosure

f(x,y) ⊆ [1, 2][3, 4]− 2[1, 2] = [−3, 6].

However, f can be expressed in other ways. In the form

f(x, y) = x(y − 2)

each parameter appears just once, so the interval evaluation is exact, i.e.

f(x,y) = [1, 2]([3, 4]− 2) = [1, 4].
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BASIC FUNCTIONS

For some basic function, computing their images over intervals is a simple task. For instance, exp(x) =
[exp(x), exp(x)] as the exponential is increasing. Similarly for the functions log, arctan, . . . Some non-

monotone functions are tractable, too, e.g. sin, cos, xn, . . . Polynomials, however, are hard to evaluate

exactly in general.

MONOTONICITY

The assumption that each interval parameter should appear at most once in a given expression is restrictive.

Moreover, f may be expressed by other basic functions and operations than +,−,×,÷. A strong tool in such

a case is to utilize monotonicity. If f(x) = f(x1, . . . , xm) is monotone with respect to the kth parameter xk,

then we are able to get rid of one interval domain. Provided f(x) is non-decreasing at xk, f(x) is attained at

xk, and f(x) is attained at xk. Similarly for the non-increasing case. In this way, the problem of determining

f(x) is reduced to the problem of determining f(x) and f(x) with smaller number of intervals. Hopefully,

the sub-problems are of the previous types so that we can calculate the exact values.

For example, let

f(x, y) =
x2 + 6− y

y2

with x ∈ [−1, 2] and y ∈ [1, 2]. The function is decreasing with respect to y on the interval domains, so in

order to compute the lower limit f(x,y) we fix y = y, and calculate

f(x, y) =
x2 + 5− y

y2
=

[−1, 2]2 + 6− 2

22
= [1, 2].

Analogously, to compute the upper limit f(x,y) we fix y = y, and calculate

f(x, y) =
x2 + 6− y

y2
=

[−1, 2]2 + 6− 1

12
= [5, 9].

Putting together, we conclude f(x,y) = [1, 9].

2.1. CLASS OF SUITABLE FUNCTIONS

From the above considerations it is clear that for a well-defined class of function we can determine their

images over intervals effectively. For the purpose of interval nonlinear regression, we define the following

classes.

Definition 2. We define the classes of functions A and B as follows. Let

f(x, θ) = f(x1, . . . , xm; θ1, . . . , θp) ∈ U .

The function f(x, θ) belongs to the class A if the function can be analytically expressed such that
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− the expression consists of operations +,−,×,÷ and basic functions that are easy to evaluate over

intervals, and

− f is monotone with respect to the parameters θ1, . . . , θp that appear more than once in the expression.

The function f(x, θ) belongs to the class B if the function can be analytically expressed such that

− the expression consists of operations +,−,×,÷ and basic functions that are easy to evaluate over

intervals, and

− f is monotone with respect to θ1, . . . , θp, x1, . . . , xm that appear more than once in the expression.

We say that the function f is of type A and B, respectively.

The significance of the Definition will be clarified in Section 3.1. If a nonlinear regression model is of

type A, then there is an efficient method for the tolerance-based possibilistic regression in the crisp input –

interval output model. Observe that the crisp input – crisp output model is a special case, hence we also get

an algorithmic method for this case as well. If a nonlinear regression model is of type B, then there is an

efficient method for the tolerance-based possibilistic regression in the interval input – interval output model.

2.2. EXAMPLES

Whenever we find out that a particular nonlinear regression function belongs to some of the classes A,B,

we know that the nonlinear tolerance approach can be applied to it.

Consider the basis (10) containing exp and ln. In both cases, the corresponding algorithms fL and fU

are trivial.

Example. The growth curves (2), (3) and (4) are B-functions.

Example. The regression function (6) can be written in the form

y = θ1 + θ2x+ θ3e
θ4 lnx,

and hence it is an A-type function. If we admit the logarithmic transformation of data x′ := lnx, we arrive

at the form

y = θ1 + θ2e
x′

+ θ3e
θ4x′

,

and in this form it is an A-type function even if we do not have ln in the basis. But note that in general, the

results of the tolerance-based approach procedure of estimation of interval regression parameters is invariant

neither under reparametrization of the model nor under data transformations.

Example. This example shows that a suitable reparametrization of a nonlinear regression function might

improve its classification. The Logistic Function is often written in the form

f(x; θ2, θ3) =
eθ2(x−θ3)

1 + eθ2(x−θ3)
,

where both the variable x and the parameters θ2, θ3 occur twice, and hence in this form it is not an A-type

function; but its equivalent form (5) is an B-type function.

Example. Berry’s Model (7) is an A-function.
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Example. The model (9) is an A-type function e. g. under the restriction θ1θ3 ≥ 0.

3. The possibilistic interval nonlinear regression

3.1. SETTING THE PROBLEM

Here, we formulate the interval regression problem. Tha aim is to find interval domains for parameters such

that all observations are covered by some realization of intervals:

Find the minimal interval domains for parameters θ = (θ1, . . . ,θp) such that for every i = 1, . . . , n
one has

yi ⊆ f(xi∗,θ). (11)

This formulation covers also problems with crisp input or crisp output as special cases. The minimality

means that there is no other interval vector θ′ $ θ satisfying (11). Nevertheless, there may exist other

interval vector, or typically many of them, that is also minimal with respect to inclusion. So there are many

degrees of freedom which minimal solution to consider. To obtain good interval parameters, the following

properties should be more or less satisfied:

− The radii of interval parameters, θ∆1 , . . . , θ∆p are balanced. It is undesirable when some interval is very

narrow, or even crisp, while another is very wide.

− The interval parameters follow the so called central tendency. That is, their centers more or less fit the

data with respect to traditional goodness-of-fit measures.

− The method is not much sensitive to outliers.

In order to fulfill these requirements for interval linear regression models, the authors proposed in (Hladı́k

and Černý, 2010; Hladı́k and Černý, 2011) a two level method. In the first step, we calculate crisp estimation

θc = (θc1, . . . , θ
c
p) to the nonlinear regression model. In the second step, we minimally extend the parameters

to intervals such that they cover all observations. This basic idea is usable for nonlinear regression as well;

we do it in the next section.

3.2. METHODOLOGY

As indicated in the previous section, we calculate interval parameters θ = (θ1, . . . ,θp) in two steps:

(a) Compute the centers θc = (θc1, . . . , θ
c
p);

(b) Compute the radii θ∆ = (θ∆1 , . . . , θ∆p ).

Centers are determined by any traditional method for nonlinear regression. In case of interval input or output,

we take the centers of the intervals. Thus, we have a standard nonlinear regression model with crisp data and
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can apply any method to compute θc. This makes our approach flexible, since it doesn’t rely on one concrete

algorithm. Next, the property on central tendency is fulfilled, too.

In the second step, we calculate the radii θ∆. In order that the resulting interval parameters are balanced

with respect to their radii, we introduce tolerance rates as a non-negative vector c∆ = (c∆1 , . . . , c
∆
p ). The

radii of interval parameters are then considered in the form θ∆ = δc∆, or

(θ∆1 , . . . , θ∆p ) = (δc∆1 , . . . , δc
∆
p ),

where δ > 0 is the unknown tolerance quotient. The aim is to determine the minimal tolerance quotient

such that the corresponding interval parameters cover all observations. A tolerance quotient satisfying the

coverage condition is called feasible.

The tolerance rates are usually set up as c∆ = |θc| or c∆ = (1, . . . , 1). The former corresponds to

relative perturbations, while the latter force all interval parameters to have the same width. If the kth interval

parameter is desired to be crisp, so it suffices to put c∆k = 0.

Now, all we need is to compute the minimal feasible tolerance quotient δ > 0. We employ the bisec-

tion method. Denote θδ := [θc − δc∆, θc + δc∆] the form of the resulting interval parameters. The basic

algorithmic scheme is as follows:

1. Put δ = 1 and loop the following command for a given number of iterations.

2. If yi ⊆ f(xi∗,θ
δ) for every i = 1, . . . , n, then decrease δ. Otherwise, increase δ.

Denote by δ∗ the return value of δ. Notice that provided the amount of decrease and increase of δ is

halved, the iterations converge exponentially fast to the optimum. Thus, for practical purposes, 5 to 15

iterations are usually enough to provide us with a sufficiently accurate approximation. For a model of type

A or B, the evaluation of the image f(xi∗,θ
δ) is fast, therefore, the overall time complexity of the algorithm

is mild.

If the last iteration was the decrease of δ, we increase δ∗ correspondingly in order to obtain a feasible

δ∗. However, it may still happen that δ∗ is not feasible. We indicate it easily be observing that δ was never

decreased in the run of the algorithm. This situation happens rarely, but cannot be excluded. For example,

consider the Gompertz Curve of the form

f(x, θ1) = e−ex−θ1
.

It is easily seen that for any θ1, f((−∞,∞), θ1) = (0, 1). If our dataset contains, say, a point (x = 0, y = 1),
that point cannot be covered, which implies that the algorithm tends to increase δ up to infinity. In general,

from the algorithmic point of view, the problem whether a given point can be covered (with a possibly

huge value of δ), is undecidable; hence we cannot do anything else than terminating the algorithm when the

value of δ exceeds limits in which the value δ has reasonable interpretation for the regression model under

consideration.

3.3. PROPERTIES OF THE MODEL

Here we only sketch some properties of the model, which have been investigated in (Hladı́k and Černý,

2011) in the case of linear regression models.
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− The method is flexible by utilizing any traditional method for the parameteric centers.

− If the input model is of type A or B, then the optimal tolerance quotient, and thus the minimal interval

parameters, are computed efficiently with a given precision.

− The interval parameters have balanced widths, proportional to the apriori given rates.

− Outliers can be handled.

Concerning outliers, they can be managed in many ways, depending on the purposes of decision maker.

For instance, the method is easily adapted to the model, in which only a fraction, say 90%, of observations

should be covered. Another possibility is to calculate the tolerance quotient δ∗ such that the corresponding

interval parameters cover e.g. 80% observations, and then consider as outliers all observations that are not

covered by the tolerance quotient 1.1δ∗.

3.4. EXAMPLES

Example 1. Assume that we measure reliability of a material (y) as a function of time (x) for which the

material is exposed to unfavorable conditions (such as unfavourable temperature or pressure). Of course

it can be expected that the longer the exposition is, the higher level of disruption. Assume that the level

of disruption is measured on a discrete scale 0, . . . , 10, where 0 means “no damage”, 1 means “very mild

damage”, . . . , and 10 means “totally damaged”. Assume further that the values of y are determined by

experts (say, by visual inspection of constructions where the material has been used). Due to a certain

subjectivity of experts, it is appropriate to consider the grade y ∈ {1, . . . , 9} as an interval, say of the form

[y, y] = [y − 0.5, y + 0.5] (12)

We model the dependence of y on x using the Gompertz curve

y = 10e−e−θ1(x−θ2)
, (13)

where θ1 measures slope of the curve (that is, the speed of worsening of the condition of the material) and

θ2 measures the shift of the curve. The shift measures whether the process of wearing of the material starts

earlier or later.

Assume that we have data from Table I. Using nonlinear least squares on the data (x1, y1), . . . , (x30, y30),
we fit

θ̂1 = 0.795, θ̂2 = 4.887. (14)

This curve describes “average” behavior of the material with respect to x.

Now we would like to extend the estimated crisp values θc1 = θ̂1 and θc2 = θ̂2 to interval values covering

all observations, taking into account the fact that it is more appropriate to handle an observation y as an

interval (12) rather than a fixed value.

We observe that the points y ∈ {0, 10} can never be covered with the Gompertz curve. We take the

following step. We divide data into three categories:

− A: material is unaffected by the unfavorable conditions;
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− B: phase of wearing;

− C: phase of total weariness.

We assume that the phase B starts when the first mild defect is encountered (i.e. the first time with y ≥ 1)

and that the phase C starts when the first total damage is encountered (i.e. first time with y = 10). The

division of data is also shown in Table I.

The main purpose of the Gompertz curve is modeling the dynamics of the wearing process, which

corresponds to the phase B. Hence it makes sense to take into account only B-data and apply the tolerance

method to them. (Observe that the data point (x24, [y24, y24]), being a C-point, need not be covered.)

As a first example, we set c∆ = ( 0.7954.887 ) (i.e., relative tolerances). We arrive at the value

δ∗ = 0.183.

Hence we conclude that it suffices to perturb the values θ̂1, θ̂2 by no more that 18.3% in order all intervals be

covered. We can roughly say that “the truth” is covered by the intervals [(1−0.183)·0.795, (1+0.183)·0.795]
and [(1 − 0.183) · 4.887, (1 + 0.183) · 4.887] for θ1 and θ2, respectively. The resulting data enclosure is

plotted in Figure 1 with a dotted line. We can also say that the “pessimistic scenario” for the speed of

weariness (measured by θ1) is (1 + 0.183) · 0.795 = 0.94 and that the “pessimistic scenario” for the shift is

(1− 0.183) · 4.887 = 3.99.

As a second example, we set c∆ = ( 11 ) (i.e., absolute tolerances). We arrive at the value

δ∗ = 0.360.

Now the data are covered by the intervals [0.795− 0.36, 0.795+ 0.36] and [4.887− 0.36, 4.887+ 0.36] for

θ1 and θ2, respectively. The resulting data enclosure is plotted in Figure 1 with a dashed-dotted line.

As a third example, we set c∆ = ( 0
4.887 ). This models the situation that the speed of worsening is kept

constant and we can perturb only the shift θ2 to cover the data. (Hence we seek for an interval for θ2 only.)

We arrive at the value

δ∗ = 0.254.

Now the data are covered by the interval [(1 − 0.36) · 4.887, (1 + 0.36) · 4.887] for θ2. The resulting data

enclosure is plotted in Figure 1 with a dashed line. Now we can say: if we know that the speed of wearing is

θ1 = 0.795, then the pessimistic scenario for θ2 is (1− 0.36) · 4.887 = 3.13.

Example 2. In Example 1 we used the fact that the Gompertz function (13) is A-type function. Using

the fact that it is also the B-type function, we can extend the example to the case where x-data are of interval

nature. This corresponds to the situation that we do not know exactly the times in which the measurements

were made. Again we use the data from Table I and for each of the observations we assume that its x-value

is an interval

[xi −
1
2 , xi +

1
2 ].

We set the values (θc1, θ
c
2) = (θ̂1, θ̂2) from (14). Using the tolerance method for covering the B-phase data,

we arrive at the results

− c∆ = ( 0.7954.887 ): δ
∗ = 0.250,

− c∆ = ( 11 ): δ
∗ = 0.61,
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0 2 4 6 8 10 12
0

1
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4

5
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10

11

start of phase B

end of phase B

Figure 1. Data from Table I, the crisp model (13) with θ̂1 = 0.795 and θ̂2 = 4.887 and the enclosures with c∆ = (0.79, 4.887)T

(relative tolerances, dotted), c∆ = (1, 1)T (absolute tolerances, dashed-dotted) and c∆ = (0, 4.887)T (only perturbation of θ2
allowed, dashed).

Table I. Source data for the Example.

phase i xi yi y
i

y
i

phase i xi yi y
i

y
i

A 1 1.0 0 — — B 16 6.3 8 7.5 8.5

A 2 1.5 0 — — B 17 7.0 8 7.5 8.5

A 3 1.7 0 — — B 18 7.1 8 7.5 8.5

A 4 2.8 0 — — B 19 7.7 9 8.5 9.5

A 5 3.5 0 — — B 20 7.7 8 7.5 8.5

B 6 3.6 1 0.5 1.5 B 21 7.7 9 8.5 9.5

B 7 4.2 2 1.5 2.5 B 22 7.9 9 8.5 9.5

B 8 4.2 1 0.5 1.5 C 23 8.0 10 — —

B 9 4.5 3 2.5 3.5 C 24 8.6 9 8.5 9.5

B 10 5.7 5 4.5 5.5 C 25 8.9 10 — —

B 11 5.8 6 5.5 6.5 C 26 9.0 10 — —

B 12 5.9 6 5.5 6.5 C 27 9.1 10 — —

B 13 6.0 7 6.5 7.5 C 28 9.5 10 — —

B 14 6.1 8 7.5 8.5 C 29 9.9 10 — —

B 15 6.1 6 5.5 6.5 C 30 10.0 10 — —
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Figure 2. Data from Table I with interval-valued xi’s in the form xi = [xi −
1
2
, xi +

1
2
], the crisp model (13) with θ̂1 = 0.795

and θ̂2 = 4.887 and the enclosures with c∆ = (0.79, 4.887)T (relative tolerances, dotted), c∆ = (1, 1)T (absolute tolerances,

dashed-dotted) and c∆ = (0, 4.887)T (only perturbation of θ2 allowed, dashed).

− c∆ = ( 0
4.887 ): δ

∗ = 0.357,

with the resulting enclosures depicted in Figure 2. Recall that the data point ([x24 −
1
2 , x24 +

1
2 ], [y24, y24]),

being a C-point, need not be covered.

4. Conclusions

In this text we extended the tolerance-based approach, originally designed for possibilistic linear regression,

for a particular class of nonlinear regression models. The method provides a covering of either crisp or

interval data of the model and for that class of models it can be computed by an efficient algorithm (provided

that the algorithms fU and fL for the basic functions are efficient). For the class of non-A-type models, the

method provides only lower bound on the optimal tolerance rate δ∗ in general. The interesting question for

further research is whether and under which conditions the method could be adapted for a wider of nonlinear

models to yield the optimal value.
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