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Interval Linear Regression

Traditional linear regression model

y = Xθ + ε

where

y . . . vector of output data;

X . . . matrix of input data;

θ . . . vector of regression parameters;

ε . . . vector of disturbances.

Crisp input – interval output model

“y = Xθ + ε”

Interval input – interval output model

“y = Xθ + ε”
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Interval Linear Regression

Possibilistic solution concept

Determine an interval vector θ such that each observation is “covered”

yi ⊆ Xiθ, i = 1, . . . , n.

We want θ as narrow as possible.

This is a multi-criteria optimization problem!

Other solution concepts

necessity solution . . .∀i = 1, . . . , n : yi ⊇ Xiθ.

weak possibilistic solution . . .∀i = 1, . . . , n : yi ∩ Xiθ 6= ∅.

strong possibilistic solution . . . ∀i = 1, . . . , n : ∀X ′
i ∈ Xi : yi ⊆ X ′

i θ.
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Interval Linear Regression
The tolerance approach

Consider θ in the form of θ = [θc − δ∗ · c , θc + δ∗ · c], where

θc is determined from (y c ,X c) using e.g. least squares;

c is given by a user, e.g.

c = |θc | . . . relative tolerance,
c = (1, . . . , 1)T . . . absolute tolerance,
if ci = 0 then θi is forced to be crisp

δ∗ is defined as

δ∗ = inf{δ ≥ 0; yi ⊆ Xi [θ
c − δ · c , θc + δ · c], i = 1, . . . , n}.

Properties of δ∗

it is easy to calculte, e.g. for the crisp input – ouput model

δ∗ = maxi :|X |ic>0 |yi − Xiθ
c |
/
(|X |ic)

its interpretation: For relative tolerances, it suffices to perturb θc by
no more than 100 · δ∗% to cover all data

it can serve as a goodness-of-fit measure of the model
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Interval Nonlinear Regression

From now on, we restrict ourselves to crisp input – interval output models.
That is, X is crisp, y is interval. (The ideas can be extended further.)

Model

Consider a (nonlinear) regression function

f (x ; θ1, . . . , θp),

where

x is a data variable (possibly a vector of variables),

θ = (θ1, . . . , θp)
T are regression parameters.

Possibilistic solution

In the crisp input – interval output regression model

“yi = f (xi ,θ)”

we seek for a narrow interval vector θ such that

yi ⊆ f (xi ,θ), i = 1, . . . , n.
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The tolerance approach: analogy of the linear case

Method

Step 1. Determine θc using traditional nonlinear regression methods
for data (X , y c ).

Step 2. Choose c . [For example: choose c = |θc | for relative
tolerances.]

Step 3. Find the minimal tolerance quotient δ∗ such that

yi ⊆ f (xi ,θ
∗), i = 1, . . . , n, (1)

where
θ
∗ = [θc − δ∗ · c , θc + δ∗ · c].

Now, θ∗ is the resulting interval vector of regression parameters.

Observation

If the inclusion (1) can be tested efficiently, then δ∗ can be found using
binary search (under certain assumptions).
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We need to determine f (x , θ). . .

Theorem (Gaganov, 1981)

In general, computing f (x ,θ) is NP-hard (even its ε-approximation).

Definition (A-type nonlinear regression models)

The function f (x , θ) can be expressed as a formula

containing +,−,×,÷;

elementary functions which are easy-to-evaluate over intervals (e.g.
exp, log, etc.);

is monotone with respect to each parameter θ1, . . . , θp which appears
more than once in the formula.

For A-type model, interval arithmetic calculates exactly f (x ,θ).

Otherwise, it may overestimate. In general, checking exactness of
interval arithmetic is NP-hard (Kreinovich, Longpré, Buckley, 2003),
but we may sometimes utilize endpoint analysis.
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Examples of A-type models

The logistic growth model

f (x ; θ1, θ2, θ3) =
θ1

1 + e−θ2(x−θ3)
;

Gompertz growth model

f (x ; θ1, θ2, θ3) = θ1 · e
−e−θ2(x−θ3) ;

estimation of the degree of a polynomial in the form

f (x ; θ1, θ2, θ3) = θ1 + θ2x + θ3x
θ4 ;

Berry’s model (used in agriculture for modeling the crop yield as a
function of the density of planting)

f (x1, x2; θ1, θ2, θ3, θ4) =

(
θ1 + θ2

(
1

x1
+

1

x2

)
+

θ3

x1x2

)−θ4

;

oscillation model

f (x ; θ1, θ2, θ3) = θ1e
−θ2x cos(θ3x).
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Example 1: degradation of material

We measure the degree of degradation of a material (y) as a function
of time (x) for which the material is exposed to unfavorable
conditions (such as temperature or pressure).

The degree of disruption is measured on a discrete scale 0, . . . , 10,
where 0 means “no damage”, 1 means “very mild damage”, . . . , and
10 means “totally damaged”.

The values of y are determined by experts (say, by visual inspection of
constructions where the material has been used).

Due to a certain subjectivity of experts, it is appropriate to consider the
grade y ∈ {1, . . . , 9} as an interval, say of the form

[y , y ] = [y − 0.5, y + 0.5].

We model the dependence of y on x using the Gompertz curve

y = 10e−e−θ1(x−θ2)
.

This is an A-class model.
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Example 1 continued

First, we fit the centers of data using nonlinear least squares, resulting in
the estimated parameters

θ̂1 = 0.795, θ̂2 = 4.887.
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Example 1 continued

Now we would like to extend the estimated crisp values θc1 := θ̂1 and

θc2 := θ̂2 to interval values covering all observations.

We observe that the points y ∈ {0, 10} can never be covered with the
Gompertz curve. From now on, we restrict ourselves to the data in
the B-phase only.

Choice 1. We set c = ( 0.7954.887 ) (i.e., relative tolerances). We get the
value δ∗ = 0.183. The data are covered by the intervals
[(1− 0.183) · 0.795, (1 + 0.183) · 0.795] and
[(1− 0.183) · 4.887, (1 + 0.183) · 4.887] for θ1 and θ2, respectively.
We conclude that it suffices to perturb the values θ̂1, θ̂2 by no more
than 18.3% in order all intervals be covered.

Choice 2. We set c = ( 11 ) (i.e., absolute tolerances). We get the
value δ∗ = 0.360. The data are covered by the intervals
[0.795 − 0.36, 0.795 + 0.36] and [4.887 − 0.36, 4.887 + 0.36] for θ1
and θ2, respectively. We conclude that it suffices to perturb the
values θ̂1, θ̂2 by no more than 0.36 in order all intervals be covered.
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Example 1 continued

Choice 3. We set c = ( 0
4.887 ). This models the situation that the

dynamics of degradation is kept constant and we can perturb only the
shift θ2 of the Gompertz curve to cover the data. We get the value
δ∗ = 0.254. The data are covered by the interval
[(1− 0.254) · 4.887, (1 + 0.254) · 4.887] for θ2.
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Example 2 — change-in-phase regression

In this example we consider a non-A-type model.

We will evaluate the non-A-type regression function f (x ;θ) using
interval arithmetic. Then, we can face redundancy.

Assume that the dependent variable y depends on the explanatory variable
x according to the simple linear relationship

y = θ1 + θ2x .

We know that the relationship changes in an unknown point. Assume that
the point of change is continuous and smooth. It is suitable to use a
model of the form

y = (1− S(x))(θ1 + θ2x) + S(x)(θ3 + θ4x),

where S is a suitable nondecreasing function with S(R) = (0, 1).

S(x) is called a “switching function”. We will use the logistic function

L(x ; θ5, θ6) =
1

1 + e−θ5(x−θ6)
.
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Example 2 continued

In the model

y = (1− S(x))(θ1 + θ2x) + S(x)(θ3 + θ4x),

the switching function S(x) = L(x ; θ5, θ6) plays the following role:

when S(x) ≈ 0, then the data follow the model θ1 + θ2x (“Phase 1”);

when S(x) ≈ 1, then the data follow the model θ3 + θ4x (“Phase 2”);

when 0 ≪ S(x) ≪ 1, then the data are in a “transition phase”
between Phase 1 and Phase 2.
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Example 2 continued

Using nonlinear least squares for centers of data we get

θ̂1 = 3.47, θ̂2 = 0.12, θ̂3 = −2.73, θ̂4 = 0.86, θ̂5 = 1.60, θ̂6 = 5.50.
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Example 2 continued

We apply the tolerance approach for calculation of the interval regression
parameters.

We set θc = (3.47, 0.12,−2.73, 0.86, 1.60, 5.50)T and we consider three
choices of c :

Choice 1: c = |θc | = (3.47, 0.12, 2.73, 0.86, 1.60, 5.50)T (relative
tolerances), with the resulting value δ∗ = 0.186. It suffices to perturb
the regression coefficients θc by no more that 18.6% in order all data
be covered.

Choice 2: c = (3.47, 0.12, 2.73, 0.86, 0, 5.50)T (relative tolerances
assuming that the dynamics of the transition phase is fixed), with the
resulting value δ∗ = 0.190;

Choice 3: c = (3.47, 0.12, 2.73, 0.86, 0, 0)T (relative tolerances
assuming that the dynamics and location of the transition phase is
fixed), with the resulting value δ∗ = 0.273.

M. Hlad́ık and M. Černý (CUNI, VŠE) Interval Nonlinear Regression June 13–15, 2012 16 / 18



Example 2 continued

We plot the enclosures as a function of x , where the expression
f (x ; [θc − δ∗ · c , θc + δ∗ · c]) was evaluated using interval arithmetic.
(Observe that it can be redundant since this is not an A-type model.)
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Conclusion and future work

Conclusion and future work

For a non-A-type model, the computed δ∗ is a lower bound on the
optimum.
An upper bound can be computed by the overestimation formula for
the mean value or slope enclosures.

For interval input – interval/crisp output model, it is also natural to
consider the solution concept

yi ⊆
[
max
Xi∈Xi

f (Xi ,θ), min
Xi∈Xi

f (Xi ,θ)
]
, i = 1, . . . , n

instead of
yi ⊆ f (Xi ,θ), i = 1, . . . , n.

It leads to (Kaucher) extended interval arithmetic.
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