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Abstract. We consider linear programming with interval data. One of the
most challenging problems in this topic is to determine or tight approximate
the set of all optimal solutions subject to all perturbations within the given
intervals. We propose an iterative method that finds an enclosure of the set
of optimal solutions. The method is based on a linear approximation and
sequential refinement. It runs in polynomial time, so, naturally, convergence
to the ideal set cannot be ensured. We apply the method in a simple portfolio
selection problem with uncertain data.
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1 Introduction

Since linear programming is widely used in modelling real-life problems, it must take into account inac-
curacies and data measurement errors, which are common in most of the problems. There are plenty of
various approaches to handle uncertainty in linear systems, see e.g. [4]. In this paper, we deal with an
interval linear programming, in which we assume that there are a priori known some intervals in which
inexact quantities may perturb. Linear programming with interval data has been studied for forty years;
see a survey paper [10]. The problems discussed are the optimal value range [4], [7], [12], basis stability,
and duality [5], among others. Interval linear programming was applied in portfolio selection problems [6],
environmental management [15] interval matrix games [16], and can also serve in fuzzy linear regression
as an alternative to traditional approaches [11, 3].

In this paper, we focus on the optimal solution set. The problem of calculating the set of all possible
solutions over all data perturbations is considered to be very difficult. It becomes tractable in the special
case of the so called basis stability [8], [14], [17], meaning that there is a basis that is optimal under
any admissible perturbation. However, basis stability is not so easy to verify; indeed, it is an NP-hard
problem [10]. Moreover, since many practical problems suffer from degeneracy, one cannot expect that
basis stability holds true in general.

Thus, the research was driven to calculate an enclosure (interval superset) of the optimal solution set.
Such enclosures can be computed e.g. by using interval arithmetic [2], [13], instead of the real one, but
the results are usually very overestimated.

Our aim is to propose an efficient algorithm for computing an enclosure of the optimal solution set.
We present an iterative algorithm that starts with an initial enclosure and sequentially makes it tighter.
Naturally, it doesn’t converge to the optimal enclosure in general, but (in view of the performed examples)
it gives bounds that are sufficiently accurate for many purposes.

Let us introduce some notations. An interval matrix is a family of matrices

A := {A ∈ R
m×n | A ≤ A ≤ A},

where A,A ∈ R
m×n are given. The midpoint and the radius of an interval matrixA is defined respectively

as

Ac :=
1

2
(A+A), A∆ :=

1

2
(A−A),
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and similarly for interval vectors. The set of all interval m×n matrices is denoted by IR
m×n. A solution

to the interval system Ax = b, x ≥ 0 means any solution to any scenario Ax = b, x ≥ 0 with A ∈ A,
b ∈ b. Similarly for interval systems of inequalities. The diagonal matrix with entries z1, . . . , zn is denoted
by diag(z).

2 Interval linear programming

Consider a linear programming problem

min cTx subject to Ax = b, x ≥ 0, (1)

and its dual

max bT y subject to AT y ≤ c.

Suppose that (possibly all) input values are inexact, and we have lower and upper limits for the ranges
of variations. Thus, we are given A ∈ IR

m×n, b ∈ IR
m, c ∈ IR

n, and we focus on the family of linear
programs (1) with A ∈ A, b ∈ b, c ∈ c. Denote by S(A, b, c) the set of optimal solutions to (1). By the
set of optimal solutions to an interval linear program we understand the set

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

The set S needn’t be a polyhedron, and it is hard to determine it in general. We want to give a cheap
calculation for an enclosure to S.

By using duality theory, we have that x ∈ S if and only if there is some y ∈ R
m, A ∈ A, b ∈ b, and

c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c, cTx = bT y. (2)

Relaxing the dependency we obtain a superset described by

Ax = b, x ≥ 0, AT y ≤ c, cTx = bT y. (3)

Notice that the solution sets are not equal, since in the latter the intervals vary independently within A

and AT , while in the former they are related. By [10], the solution set to (3) is described as

Ax ≤ b, −Ax ≤ −b, x ≥ 0, AT
c y −AT

∆|y| ≤ c, |cTc x− bTc y| ≤ cT∆x+ bT∆|y|. (4)

It represents a non-convex polyhedron, which becomes convex when we restrict the signs of yi, i =
1, . . . ,m. A simple method introduced in [10] was based on decomposing (4) into 2m sub-problems
according to the signs of yi, i = 1, . . . ,m. Each sub-problem has a linear description and is solved by
ordinary linear programming. However, the method is very time consuming as m grows.

In the following, we employ a kind of linearization of (4), which is based on a result by Beaumont [1].
It needs an initial enclosure, which is used for refinement.

Theorem 1 (Beaumont, 1998). For every y ∈ y ⊂ R with y < y one has

|y| ≤ αy + β, (5)

where

α =
|y| − |y|

y − y
and β =

y|y| − y|y|

y − y
.

Moreover, if y ≥ 0 or y ≤ 0 then (5) holds as equation.

Let x ∈ IR
n and y ∈ IR

m be an enclosure to (4). By the Beaumont theorem, we will linearize the
absolute value |y| as follows. Define vectors α, β ∈ R

m componentwise as

αi :=







|y
i
|−|yi|

y
i
−yi

if yi < yi,

sgn(yi) if yi = yi,

βi :=







y
i
|yi|−yi|yi

|

y
i
−yi

if yi < yi,

0 if yi = yi.
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Then the linearization of (4) reads

Ax ≤ b, −Ax ≤ −b, x ≥ 0, (6a)
(

AT
c −AT

∆ diag(α)
)

y ≤ c+AT
∆β, (6b)

cTx+
(

− bTc − bT∆ diag(α)
)

y ≤ bT∆β, (6c)

−cTx+
(

bTc − bT∆ diag(α)
)

y ≤ bT∆β. (6d)

Now, we compute the interval hull to (6). If it is smaller than the initial enclosure x,y then we can iterate
the process to obtain more tight enclosure. It is a basic idea of our method described in Algorithm 1.

The initial enclosure x0,y0 from step 1 is taken as

x0 := ([0,K], . . . , [0,K])T , y0 := ([−K,K], . . . , [−K,K])T ,

where K ≫ 0 is large enough. The stopping criterion used in step 7 is

∑n
j=1(x

i
∆)j +

∑m
j=1(y

i
∆)j

∑n

j=1(x
i−1
∆ )j +

∑m

j=1(y
i−1
∆ )j

≥ 0.99.

Algorithm 1 (Optimal solution set contractor)

1: Compute an initial interval enclosure x0,y0 of (4);
2: i := 0;
3: repeat

4: compute α and β by using yi;
5: i := i+ 1;
6: compute the interval hull xi,yi of (6);
7: until improvement is nonsignificant;
8: return xi;

Remark 1. There is a natural problem how to choose a sufficiently large K for the initial enclosure.
Even though the algorithm works well for very conservative K (cf. Example 1), in some cases, we can
validate that K is large enough.

Suppose that x0,y0 contain at least one optimal solution for some scenario (which is easy to satisfy).
Next, suppose that (2) is solvable for each A ∈ A, b ∈ b, and c ∈ c; this issue is discussed e.g. in [10].
Take the initial enclosure x0,y0 as

x0 := ([−1,K], . . . , [−1,K])T , y0 := ([−K,K], . . . , [−K,K])T ,

If the interval vectors x1,y1 from the next iteration are strictly inside the initial ones, that is, if x0 <

x1 ≤ x1 < x0 and y0 < y1 ≤ y1 < y0, then x1,y1 comprise all optimal solutions (this is why we put the

lower limits of x0 as −1 instead of 0). This is easily seen from the continuity reasons since, under our
assumption, the optimal solution set is connected.

Example 1. Consider an interval linear program

min−[15, 16]x1 − [17, 18]x2 subject to

x1 ≤ [10, 11],

−x1 + [5, 6]x2 ≤ [25, 26],

[6, 6.5]x1 + [3, 4.5]x2 ≤ [81, 82],

−x1 ≤ −1,

x1 − [10, 12]x2 ≤ −[1, 2].

Even though it is not in the standard form (1), the associated primal–dual pair is the same as for (1).
We take the initial enclosure

x0 = 1000 · ([−1, 1], [−1, 1])T ,

y0 = 1000 · ([0, 1], [0, 1], [0, 1], [0, 1], [0, 1])T .

Proceedings of 30th International Conference Mathematical Methods in Economics

- 286 -



1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

0 x1

x2

Figure 1: Intersection of all feasible sets in dark gray; union in light gray; the resulting enclosure of
optimal solutions represented by the dotted rectangle.

The iterations of the procedure go as follows

x1 = ([1, 11], [−568, 916])T ,

y1 = ([0, 1000], [0, 936], [0, 358], [0, 1000], [0, 572])T ,

x2 = ([1, 11], [−17.2, 72])T ,

y2 = ([0, 190], [0, 58.5], [0, 24.3], [0, 176], [0, 34.6])T ,

x3 = ([3.78, 11], [1.91, 9.80])T ,

y3 = ([0, 30.6], [0, 6.98], [4.71], [0, 17.1], [0, 3.09])T ,

x4 = ([6.65, 11], [2.66, 7.21])T ,

y4 = ([0, 22.5], [0.08, 4.33], [0, 3.67], [0, 8.81], [0, 1.47])T .

The fifth iteration does no improvement, so we return the enclosure x4. Notice that the same result is
obtained by the exponential decomposition procedure discussed above, but with a much more computa-
tional effort. An illustration is given in Figure 1. We see that the upper bounds are very tight, but the
lower bounds are quite conservative.

Example 2. Let us apply our approach in a simple portfolio selection model. Consider we have J possible
investments for T time periods and rtj , t = 1, . . . , T , j = 1, . . . , J , stands for return on investment j in
time period t. Estimated reward on investment j using historical means is defined as

Wj :=
1

T

T
∑

t=1

rtj , j = 1, . . . , J,

or in matrix form W = 1
T
RT e, where e is the vector of ones (with convenient dimension). In order to

get a linear programming formulation of the problem we measure risk of investment j by sum of absolute
values instead of the sum of the squares:

1

T

T
∑

t=1

|rtj −Wj |.

Let µ be a risk aversion parameter (upper bound for risk) given by a user, and the variables xj , j =
1, . . . , J , denotes a fraction of portfolio to invest in j. Then the maximal allowed risk is expressed by the
constraint

1

T

T
∑

t=1

∣

∣

∣

J
∑

j=1

(rtj −Wj)xj

∣

∣

∣
≤ µ,

or, by converting to a linear inequality system

−yj ≤

J
∑

j=1

(rtj −Wj)xj ≤ yt, ∀t = 1, . . . , T,
1

T

T
∑

t=1

yt ≤ µ.
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In a compact matrix form, it reads

−y ≤
(

I −
1

T
E
)

Rx ≤ y,
1

T
eT y ≤ µ,

where E is the matrix of ones and I the identity matrix. In order to obtain a robust formulation of the
portfolio selection problem, we state the linear programming problem as

max
J
∑

j=1

Wjxj =
1

T
eTRx

subject to −y ≤
(

I −
1

T
E
)

z ≤ y, Rx = z,

eTx = 1,
1

T
eT y ≤ µ, x, y ≥ 0.

For concreteness, consider a portfolio selection problem with J = 4 investments and T = 5 time
periods. The risk aversion parameter is set as µ := 2. The returns are displayed below:

time period t reward on investment

1 2 3 4

1 10 20 9 11

2 12 25 11 14

3 9 17 12 12

4 11 21 11 14

5 11 19 13 16

The optimal solution is x∗ = (0, 0.9643, 0.0357, 0)T and the corresponding optimal return is ≈ 20.08.

Suppose that the returns are not known precisely. We extend the values of rtj to intervals [0.99rtj, 1.01rtj],
that is, the returns may vary independently and simultaneously within 1% tolerance. We calculate the
following enclosure of the optimal solutions

x(1) = ([0, 0.1699], [0.7621, 1], [0, 0.181], [0, 0.2379])T .

Even though the result is very conservative, we can conclude some interesting properties. Regardless the
setting of values from intervals, we can be sure that at least 75% of the optimal portfolio is directed to the
second investment. The remaining investments constitute at most 17%, 18% and 24% of the portfolio,
respectively.

Now, let study 5% perturbations of all returns except for the second investment. Thus, we replace the
values rjt by intervals [0.95rtj, 1.05rtj], j = 1, 3, 4, t = 1, . . . , T . The calculated enclosure for the optimal
solutions is very tight:

x(2) = ([0, 0.0495], [0.9276, 0.9712], [0, 0.0531], [0, 0.0724])T .

Notice that this problem setting is not B-stable [9], that is, there is no basis being optimal for each
interval realization. For instance, putting the fourth investment returns to the upper limit and the others
to the lower limit, we get a solution x∗ = (0, 0.9492, 0, 0.0508)T . In this setting, it is optimal to invest
in the fourth subject instead of the third one.

3 Conclusion

We proposed a method for contracting an interval enclosure of the optimal solution set. It was based
on a linearization and iterative refinement. Even though it doesn’t converge to the optimal bounds in
general, it gives a sufficiently tight enclosure in short time. Thus it can be used as a method for solving
interval linear programming itself, or a first step in more involved algorithms.

The method seems to converge quickly in spite of a very huge initial enclosure. However, to decrease
the number of iterations, we will address the future research to finding a more appropriate initial enclosure.
We will also carry out more numerical experiments to empirically verify the convergence speed.
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