An interval linear programming contractor

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

> MME 2012, Karviná September 11 – 13

... intervals

Motivation

Interval data are used to model:

- real life uncertainties
- measurement errors
- sensitivity analysis

Notation

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \}.$$

The center and radius matrices

$$A_c := \frac{1}{2}(\overline{A} + \underline{A}), \quad A_{\Delta} := \frac{1}{2}(\overline{A} - \underline{A}).$$

Introduction

Interval linear programming

Consider a linear programming problem

$$\min c^T x$$
 subject to $Ax = b, x \ge 0$,

where $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

State of the art

- optimal value range (Chinneck & Ramadan, 2000, Hladík, 2009, Jansson, 2004, Mráz, 1998, Rohn, 2006, etc.)
- duality (Gabrel & Murat, 2010, Rohn, 1980, Serafini, 2005)
- basis stability (Beeck, 1978, Koníčková, 2001, Hladík, 2010, Rohn, 1993)
- optimal solution set (Beeck, 1978, Jansson, 1988, Machost, 1970)

Problem statement

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

$$\min c^T x$$
 subject to $Ax = b, x \ge 0$,

Then the optimal solution set is defined

$$\mathcal{S} := \bigcup_{A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c}} \mathcal{S}(A, b, c).$$

Goal

Find a tight enclosure to S.

Approaches

• Interval arithmetic (conservative)

Our approach

Characterization

By duality theory, we have that $x \in \mathcal{S}$ if and only if there is some $y \in \mathbb{R}^m$, $A \in \mathbf{A}$, $b \in \mathbf{b}$, and $c \in \mathbf{c}$ such that

$$Ax = b, x \ge 0, A^T y \le c, c^T x = b^T y$$

where $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

Relaxation

$$Ax = b, x \ge 0, A'^{T}y \le c, c'^{T}x = b'^{T}y,$$

where $A, A' \in \mathbf{A}$, $b, b' \in \mathbf{b}$, $c, c' \in \mathbf{c}$.

Our approach

Description of the relaxed problem

$$\underline{A}x \leq \overline{b},
-\overline{A}x \leq -\underline{b},
x \geq 0,
A_c^T y - A_{\Delta}^T |y| \leq \overline{c},
|c_c^T x - b_c^T y| \leq c_{\Delta}^T x + b_{\Delta}^T |y|.$$

Properties

- The solution set is non-convex in general
- It is linear at any orthant
- NP-hard to obtain exact bounds

Idea

Linearize |y|.

Linearization of |y|

Theorem (Beaumont, 1998)

For every $y \in \mathbf{y} \subset \mathbb{R}$ with $y < \overline{y}$ one has

$$|y| \le \alpha y + \beta,\tag{1}$$

where

$$\alpha = \frac{|\overline{y}| - |\underline{y}|}{\overline{y} - \underline{y}} \quad \text{and} \quad \beta = \frac{\overline{y}|\underline{y}| - \underline{y}|\overline{y}|}{\overline{y} - \underline{y}}.$$

Moreover, if $y \ge 0$ or $\overline{y} \le 0$ then (1) holds as equation.

Linearization of |y|

Now, the linearization reads

$$\begin{split} \underline{A}x &\leq \overline{b}, \ -\overline{A}x \leq -\underline{b}, \ x \geq 0, \\ \left(A_c^T - A_{\Delta}^T \operatorname{diag}(\alpha)\right) y &\leq \overline{c} + A_{\Delta}^T \beta, \\ \underline{c}^T x + \left(-b_c^T - b_{\Delta}^T \operatorname{diag}(\alpha)\right) y &\leq b_{\Delta}^T \beta, \\ -\overline{c}^T x + \left(b_c^T - b_{\Delta}^T \operatorname{diag}(\alpha)\right) y &\leq b_{\Delta}^T \beta, \end{split}$$

where

$$\begin{split} \alpha_i &:= \begin{cases} \frac{|\overline{y}_i| - |\underline{y}_i|}{\overline{y}_i - \underline{y}_i} & \text{if } \underline{y}_i < \overline{y}_i, \\ \operatorname{sgn}(\overline{y}_i) & \text{if } \underline{y}_i = \overline{y}_i, \end{cases} \\ \beta_i &:= \begin{cases} \frac{\overline{y}_i |\underline{y}_i| - \underline{y}_i |\overline{y}_i|}{\overline{y}_i - \underline{y}_i} & \text{if } \underline{y}_i < \overline{y}_i, \\ 0 & \text{if } \underline{y}_i = \overline{y}_i. \end{cases} \end{split}$$

Contractor

Algorithm (Optimal solution set contractor)

- lacktriangle Compute an initial interval enclosure $\mathbf{x}^0, \mathbf{y}^0$
- 0 i := 0;
- repeat
 - **①** compute the interval hull $\mathbf{x}^i, \mathbf{y}^i$ of the linearized system;
 - i := i + 1;
- until improvement is nonsignificant;
- o return xⁱ;

Properties

- Each iteration requires solving an interval hull (2n linear programs).
- ullet In practice, it converges quickly, but not to ${\cal S}$ in general.

Problems

• How to determine an initial enclosure x^0, y^0 ?

Example

Consider an interval linear program

$$\begin{split} \min-[15,16]x_1-[17,18]x_2 & \text{ subject to } \\ x_1 \leq [10,11], \\ -x_1+[5,6]x_2 \leq [25,26], \\ [6,6.5]x_1+[3,4.5]x_2 \leq [81,82], \\ -x_1 \leq -1, \\ x_1-[10,12]x_2 \leq -[1,2]. \end{split}$$

Take the initial enclosure

$$\mathbf{x}^0 = 1000 \cdot ([-1, 1], [-1, 1])^T,$$

 $\mathbf{y}^0 = 1000 \cdot ([0, 1], [0, 1], [0, 1], [0, 1])^T.$

Example (cont.)

- In grey the largest and the smallest feasible area.
- ullet The final enclosure of the optimal solution set ${\cal S}$ is dotted.

Application: portfolio selection

Given:

- J possible investments;
- T time periods;
- r_{jt} , return on investment j in time period t;
- \bullet μ , risk aversion parameter (upper bound for risk).

Then:

- Estimated reward on investment j: $R_j := \frac{1}{T} \sum_{t=1}^{I} r_{jt}$;
- Risk measure of investment j: $\frac{1}{T} \sum_{t=1}^{I} |r_{jt} R_j|$;
- Maximal allowed risk: $\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{j=1}^{J} (r_{jt} R_j) x_j \right| \le \mu.$

Application: portfolio selection

Portfolio selection problem formulation

$$\begin{aligned} \max & \sum_{j=1}^J R_j x_j \\ \text{subject to } & -y_j \leq \sum_{j=1}^J (r_{jt} - R_j) x_j \leq y_t, \quad \forall t = 1, \dots, T, \\ & \sum_{j=1}^J x_j = 1, \ \frac{1}{T} \sum_{t=1}^T y_t \leq \mu, \\ & x_j \geq 0, \quad \forall j = 1, \dots, J, \end{aligned}$$

where

$$R_j := \frac{1}{T} \sum_{t=1}^{T} r_{jt}.$$

Example

J=4 investments, T=5 time periods, $\mu=2$ risk aversion parameter.

The returns:

time period t	return on investment			
	1	2	3	4
1	10	20	9	11
2	12	25	11	14
3	9	17	12	12
4	11	21	11	14
5	11	19	13	16

- The optimal return: 20.08.
- The optimal solution: $x^* = (0, 0.9643, 0.0357, 0)^T$

Suppose that the returns are not known precisely:

1 (1% tolerance) extending r_{tj} to intervals $[0.99r_{tj}, 1.01r_{tj}]$, we calculate:

$$\mathbf{x}^{(1)} = ([0, 0.1699], [0.7621, 1], [0, 0.181], [0, 0.2379])^T.$$

② (5% tolerance) replace r_{jt} by intervals $[0.95r_{tj}, 1.05r_{tj}], j \neq 2$

$$\mathbf{x}^{(2)} = ([0, 0.0495], [0.9276, 0.9712], [0, 0.0531], [0, 0.0724])^T.$$

Conclusion and future work

Conclusion

- ullet Efective contractor for the optimal solution set \mathcal{S} .
- Each iteration requires solving 2n linear programs.
- In practice, it converges quickly.

Future work

ullet Initial enclosure of the optimal solution set $\mathcal{S}.$