Interval Linear Programming: Foundations, Tools and Challenges

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

Dagstuhl Seminar 11371, Germany September 11–16

Linear programming

Three basic forms of linear programs

$$f(A, b, c) \equiv \min c^{\mathsf{T}} x \text{ subject to } Ax = b, x \ge 0,$$

$$f(A, b, c) \equiv \min c^{\mathsf{T}} x \text{ subject to } Ax \le b,$$

$$f(A, b, c) \equiv \min c^{\mathsf{T}} x \text{ subject to } Ax \le b, x \ge 0.$$

Notation

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \}.$$

The center and radius matrices

$$A_c := rac{1}{2}(\overline{A} + \underline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

M. Hladík (CUNI)

Interval linear programming

Family of linear programs with $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$, in short

$$f(\mathbf{A}, \mathbf{b}, \mathbf{c}) \equiv \min \mathbf{c}^T x$$
 subject to $\mathbf{A} x \stackrel{(\leq)}{=} \mathbf{b}, \ (x \ge 0).$

A scenario is a concrete linear program in this family.

The three forms are not transformable between each other!

Goals

- determine the optimal value range;
- determine a tight enclosure to the optimal solution set.

Complexity of basic problems

	$\mathbf{A}x = \mathbf{b}, \ x \ge 0$	$\mathbf{A}x \leq \mathbf{b}$	$\mathbf{A}x \leq \mathbf{b}, \ x \geq 0$
strong feasibility	NP-hard	polynomial	polynomial
weak feasibility	polynomial	NP-hard	polynomial
strong unboundedness	NP-hard	polynomial	polynomial
weak unboundedness	suff. / necessary conditions only	suff. / necessary conditions only	polynomial
strong optimality	NP-hard	NP-hard	polynomial
weak optimality	suff. / necessary conditions only	suff. / necessary conditions only	suff. / necessary conditions only
optimal value range	<u>f</u> polynomial NP-hard	<u>f</u> NP-hard f polynomial	polynomial

Optimal value range

Definition

$$\underline{f}:=\min f(A,b,c) \hspace{0.2cm} ext{subject to} \hspace{0.2cm} A\in oldsymbol{\mathsf{A}}, \hspace{0.2cm} b\in oldsymbol{\mathsf{b}}, \hspace{0.2cm} c\in oldsymbol{\mathsf{c}},$$

 $\overline{f} := \max f(A, b, c)$ subject to $A \in \mathbf{A}, b \in \mathbf{b}, c \in \mathbf{c}$.

Theorem (Rohn, 2006)

We have for type $(\mathbf{A}x = \mathbf{b}, x \ge 0)$

$$\frac{f}{f} = \min \underline{c}^T x \quad subject \ to \quad \underline{A}x \leq \overline{b}, \ \overline{A}x \geq \underline{b}, \ x \geq 0,$$
$$\overline{f} = \max_{p \in \{\pm 1\}^m} f(A_c - \operatorname{diag}(p) A_\Delta, b_c + \operatorname{diag}(p) b_\Delta, \overline{c}).$$

Theorem (Vajda, 1961)

We have for type ($\mathbf{A}x \leq \mathbf{b}, x \geq 0$)

$$\underline{f} = \min \underline{c}^{\mathsf{T}} x \text{ subject to } \underline{A} x \leq \overline{b}, \ x \geq 0,$$

$$\overline{f} = \min \overline{c}^{\mathsf{T}} x \text{ subject to } \overline{A} x \leq \underline{b}, \ x \geq 0.$$

Optimal value range

Algorithm (Optimal value range $[\underline{f}, \overline{f}]$)

Compute

$$\underline{f} := \mathsf{inf} \ c_c^{\mathsf{T}} x - c_\Delta^{\mathsf{T}} |x| \ \mathsf{subject to} \ x \in \mathcal{M},$$

where ${\cal M}$ is the primal solution set.

2 If
$$\underline{f} = \infty$$
, then set $\overline{f} := \infty$ and stop.

Compute

$$\overline{\varphi} := \sup \ b_c^T y + b_\Delta^T |y| \ \text{ subject to } \ y \in \mathcal{N},$$

where ${\cal N}$ is the dual solution set.

- If $\overline{\varphi} = \infty$, then set $\overline{f} := \infty$ and stop.
- If the primal problem is strongly feasible, then set *f* := *φ*; otherwise set *f* := ∞.

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min
$$c^T x$$
 subject to $Ax = b$, $x \ge 0$,

Then the optimal solution set is defined

$$\mathcal{S} := \bigcup_{A \in \mathbf{A}, \ b \in \mathbf{b}, \ c \in \mathbf{c}} \mathcal{S}(A, b, c).$$

Goal

Find a tight enclosure to \mathcal{S} .

Optimal solution set

Characterization

By duality theory, we have that $x \in S$ if and only if there is some $y \in \mathbb{R}^m$, $A \in \mathbf{A}$, $b \in \mathbf{b}$, and $c \in \mathbf{c}$ such that

$$Ax = b, x \ge 0, A^T y \le c, c^T x = b^T y,$$

where $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

Relaxation

Relaxing the dependencies

$$\mathbf{A}x = \mathbf{b}, \ x \ge 0, \ \mathbf{A}^T y \le \mathbf{c}, \ \mathbf{c}^T x = \mathbf{b}^T y,$$

which is described by

$$\underline{A}x \leq \overline{b}, \quad -\overline{A}x \leq -\underline{b}, \quad x \geq 0, \\ A_c^T y - A_\Delta^T |y| \leq \overline{c}, \quad |c_c^T x - b_c^T y| \leq c_\Delta^T x + b_\Delta^T |y|.$$

M. Hladík (CUNI)

Linearization of |y|

Properties

- The solution set is non-convex in general
- It is linear at any orthant
- NP-hard to obtain exact bounds

Theorem (Beaumont, 1998)

For every $y \in \mathbf{y} \subset \mathbb{R}$ with $\underline{y} < \overline{y}$ one has

$$|\mathbf{y}| \le \alpha \mathbf{y} + \beta,\tag{1}$$

where

$$\alpha = \frac{|\overline{y}| - |\underline{y}|}{\overline{y} - \underline{y}} \text{ and } \beta = \frac{\overline{y}|\underline{y}| - \underline{y}|\overline{y}|}{\overline{y} - \underline{y}}.$$

Moreover, if $\underline{y} \ge 0$ or $\overline{y} \le 0$ then (1) holds as equation.

Linearization of |y|

Now, the linearization reads

$$\underline{A}x \leq \overline{b}, \ -\overline{A}x \leq -\underline{b}, \ x \geq 0$$
$$(A_c^T - A_\Delta^T \operatorname{diag}(\alpha))y \leq \overline{c} + A_\Delta^T\beta,$$
$$\underline{c}^T x + (-b_c^T - b_\Delta^T \operatorname{diag}(\alpha))y \leq b_\Delta^T\beta,$$
$$-\overline{c}^T x + (b_c^T - b_\Delta^T \operatorname{diag}(\alpha))y \leq b_\Delta^T\beta,$$

where

$$\begin{aligned} \alpha_i &:= \begin{cases} \frac{|\overline{y}_i| - |\underline{y}_i|}{\overline{y}_i - \underline{y}_i} & \text{if } \underline{y}_i < \overline{y}_i, \\ \operatorname{sgn}(\overline{y}_i) & \text{if } \underline{y}_i = \overline{y}_i, \end{cases} \\ \beta_i &:= \begin{cases} \frac{\overline{y}_i |\underline{y}_i| - \underline{y}_i |\overline{y}_i|}{\overline{y}_i - \underline{y}_i} & \text{if } \underline{y}_i < \overline{y}_i \\ 0 & \text{if } \underline{y}_i = \overline{y}_i \end{cases} \end{aligned}$$

M. Hladík (CUNI)

Contractor

Algorithm (Optimal solution set contractor)

- $\textcircled{O} \quad \text{Compute an initial interval enclosure } \mathbf{x}^0, \mathbf{y}^0$
- i := 0;
- repeat
 - compute the interval hull xⁱ, yⁱ of the linearized system;
 - **2** i := i + 1;
- until improvement is nonsignificant;
- return xⁱ;

Properties

- Each iteration requires compting the interval hull (2(m + n) linear programs).
- $\bullet\,$ In practice, it converges quickly, but not to ${\cal S}$ in general.

Example

Example

Consider an interval linear program

m

$$\begin{split} & \min - [15, 16] x_1 - [17, 18] x_2 \quad \text{subject to} \\ & x_1 \leq [10, 11], \\ & -x_1 + [5, 6] x_2 \leq [25, 26], \\ & [6, 6.5] x_1 + [3, 4.5] x_2 \leq [81, 82], \\ & -x_1 \leq -1, \\ & x_1 - [10, 12] x_2 \leq -[1, 2]. \end{split}$$

Take the initial enclosure

$$\begin{aligned} \mathbf{x}^{0} &= 1000 \cdot ([-1,1], [-1,1])^{T}, \\ \mathbf{y}^{0} &= 1000 \cdot ([0,1], [0,1], [0,1], [0,1], [0,1])^{T}. \end{aligned}$$

Example

Example (cont.)

The iterations of the procedure go as follows

$$\mathbf{x}^{0} = 1000 \cdot ([-1, 1], [-1, 1])^{T},$$

$$\mathbf{y}^{0} = 1000 \cdot ([0, 1], [0, 1], [0, 1], [0, 1], [0, 1])^{T},$$

$$\mathbf{x}^{1} = ([1, 11], [-568, 916])^{T},$$

$$\mathbf{y}^{1} = ([0, 1000], [0, 936], [0, 358], [0, 1000], [0, 572])^{T},$$

$$\mathbf{x}^{2} = ([1, 11], [-17.2, 72])^{T},$$

$$\mathbf{y}^{2} = ([0, 190], [0, 58.5], [0, 24.3], [0, 176], [0, 34.6])^{T},$$

$$\mathbf{x}^{3} = ([3.78, 11], [1.91, 9.80])^{T},$$

$$\mathbf{y}^{3} = ([0, 30.6], [0, 6.98], [4.71], [0, 17.1], [0, 3.09])^{T},$$

$$\mathbf{x}^{4} = ([6.65, 11], [2.66, 7.21])^{T},$$

$$\mathbf{y}^{4} = ([0, 22.5], [0.08, 4.33], [0, 3.67], [0, 8.81], [0, 1.47])$$

Example (cont.)

- In grey the largest and the smallest feasible area.
- $\bullet\,$ The final enclosure of the optimal solution set ${\cal S}$ is dotted.

Definition

The interval linear programming problem

min
$$\mathbf{c}^T x$$
 subject to $\mathbf{A} x = \mathbf{b}, x \ge 0$,

is B-stable if B is an optimal basis for each scenario.

Theorem

B-stability implies that the optimal value bounds are

Under the unique B-stability, the set of all optimal solutions reads

$$\underline{A}_B x_B \leq \overline{b}, \ -\overline{A}_B x_B \leq -\underline{b}, \ x_B \geq 0, \ x_N = 0.$$

Basis stability

Non-interval case

Basis B is optimal iff

- C1. A_B is non-singular;
- C2. $A_B^{-1}b \ge 0;$ C3. $c_N^T - c_B^T A_B^{-1} A_N \ge 0^T.$

Interval case

The problem is B-stable iff C1–C3 holds for each $A \in \mathbf{A}$, $b \in \mathbf{b}$, $c \in \mathbf{c}$.

Theorem

Condition C3 holds true if and only if for each $q \in \{\pm 1\}^m$ the polyhedral set described by

$$egin{aligned} &((A_c)_B^{T}-(A_{\Delta})_B^{T}\operatorname{diag}(q))y\leq\overline{c}_B,\ &-((A_c)_B^{T}+(A_{\Delta})_B^{T}\operatorname{diag}(q))y\leq-\underline{c}_B,\ &\mathrm{diag}(q)\,y\geq0 \end{aligned}$$

lies inside the polyhedral set

$$((A_c)_N^T + (A_\Delta)_N^T \operatorname{diag}(q))y \leq \underline{c}_N, \ \operatorname{diag}(q)y \geq 0.$$

Open problems

- A sufficient and necessary condition for weak unboundedness, strong boundedness and weak optimality.
- A method to check if a given x^{*} ∈ ℝⁿ is an optimal solution for some scenario.
- A method for determining the image of the optimal value function.
- A sufficient and necessary condition for duality gap to be zero for each scenario.
- A method to test if a basis B is optimal for some scenario.
- Tight enclosure to the optimal solution set.