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Introduction

Linear programming

Three basic forms of linear programs

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).
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Introduction

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c, in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

A scenario is a concrete linear program in this family.

The three forms are not transformable between each other!

Goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.
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Complexity of basic problems

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

strong feasibility NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial

strong
unboundedness

NP-hard polynomial polynomial

weak
unboundedness

suff. / necessary
conditions only

suff. / necessary
conditions only

polynomial

strong
optimality NP-hard NP-hard polynomial

weak optimality
suff. / necessary
conditions only

suff. / necessary
conditions only

suff. / necessary
conditions only

optimal value
range

f polynomial
f NP-hard

f NP-hard
f polynomial

polynomial
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Optimal value range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

Theorem (Rohn, 2006)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
p∈{±1}m

f (Ac − diag(p)A∆, bc + diag(p) b∆, c).

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.
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Optimal value range

Algorithm (Optimal value range [f , f ])

1 Compute

f := inf cTc x − cT∆ |x | subject to x ∈ M,

where M is the primal solution set.

2 If f = ∞, then set f := ∞ and stop.

3 Compute

ϕ := sup bTc y + bT∆|y | subject to y ∈ N ,

where N is the dual solution set.

4 If ϕ = ∞, then set f := ∞ and stop.

5 If the primal problem is strongly feasible, then set f := ϕ;
otherwise set f := ∞.
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Optimal solution set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Goal

Find a tight enclosure to S.
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Optimal solution set

Characterization

By duality theory, we have that x ∈ S if and only if there is some y ∈ R
m,

A ∈ A, b ∈ b, and c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c , cT x = bT y ,

where A ∈ A, b ∈ b, c ∈ c.

Relaxation

Relaxing the dependencies

Ax = b, x ≥ 0, AT y ≤ c, cT x = bT y ,

which is described by

Ax ≤ b, −Ax ≤ −b, x ≥ 0,

AT
c y − AT

∆|y | ≤ c , |cTc x − bTc y | ≤ cT∆x + bT∆|y |.
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Linearization of |y |

Properties

The solution set is non-convex in general

It is linear at any orthant

NP-hard to obtain exact bounds

Theorem (Beaumont, 1998)

For every y ∈ y ⊂ R with y < y one has

|y | ≤ αy + β, (1)

where

α =
|y | − |y |

y − y
and β =

y |y | − y |y |

y − y
.

Moreover, if y ≥ 0 or y ≤ 0 then (1) holds as equation.
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Linearization of |y |

Now, the linearization reads

Ax ≤ b, −Ax ≤ −b, x ≥ 0,
(

AT
c − AT

∆ diag(α)
)

y ≤ c + AT
∆β,

cT x +
(

− bTc − bT∆ diag(α)
)

y ≤ bT∆β,

−cT x +
(

bTc − bT∆ diag(α)
)

y ≤ bT∆β,

where

αi :=







|y i |−|y i |

y i−y i
if y i < y i ,

sgn(y i) if y i = y i ,

βi :=







y i |y i |−y i |y i |

y i−y i
if y i < y i ,

0 if y i = y i .
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Contractor

Algorithm (Optimal solution set contractor)

1 Compute an initial interval enclosure x0, y0

2 i := 0;
3 repeat

1 compute the interval hull xi , yi of the linearized system;

2 i := i + 1;

4 until improvement is nonsignificant;

5 return xi ;

Properties

Each iteration requires compting the interval hull
(2(m + n) linear programs).

In practice, it converges quickly, but not to S in general.
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Example

Example

Consider an interval linear program

min−[15, 16]x1 − [17, 18]x2 subject to

x1 ≤ [10, 11],

−x1 + [5, 6]x2 ≤ [25, 26],

[6, 6.5]x1 + [3, 4.5]x2 ≤ [81, 82],

−x1 ≤ −1,

x1 − [10, 12]x2 ≤ −[1, 2].

Take the initial enclosure

x0 = 1000 · ([−1, 1], [−1, 1])T ,

y0 = 1000 · ([0, 1], [0, 1], [0, 1], [0, 1], [0, 1])T .
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Example

Example (cont.)

The iterations of the procedure go as follows

x0 = 1000 · ([−1, 1], [−1, 1])T ,

y0 = 1000 · ([0, 1], [0, 1], [0, 1], [0, 1], [0, 1])T ,

x1 = ([1, 11], [−568, 916])T ,

y1 = ([0, 1000], [0, 936], [0, 358], [0, 1000], [0, 572])T ,

x2 = ([1, 11], [−17.2, 72])T ,

y2 = ([0, 190], [0, 58.5], [0, 24.3], [0, 176], [0, 34.6])T ,

x3 = ([3.78, 11], [1.91, 9.80])T ,

y3 = ([0, 30.6], [0, 6.98], [4.71], [0, 17.1], [0, 3.09])T ,

x4 = ([6.65, 11], [2.66, 7.21])T ,

y4 = ([0, 22.5], [0.08, 4.33], [0, 3.67], [0, 8.81], [0, 1.47])T .
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Example

Example (cont.)

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

0 x1

x2

In grey the largest and the smallest feasible area.

The final enclosure of the optimal solution set S is dotted.
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Basis stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each scenario.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.
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Basis stability

Theorem

Condition C3 holds true if and only if for each q ∈ {±1}m the polyhedral
set described by

((Ac)
T
B − (A∆)

T
B diag(q))y ≤ cB ,

−((Ac)
T
B + (A∆)

T
B diag(q))y ≤ −cB ,

diag(q) y ≥ 0

lies inside the polyhedral set

((Ac)
T
N + (A∆)

T
N diag(q))y ≤ cN , diag(q) y ≥ 0.
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Conclusion

Open problems

A sufficient and necessary condition for weak unboundedness, strong
boundedness and weak optimality.

A method to check if a given x∗ ∈ R
n is an optimal solution for some

scenario.

A method for determining the image of the optimal value function.

A sufficient and necessary condition for duality gap to be zero for
each scenario.

A method to test if a basis B is optimal for some scenario.

Tight enclosure to the optimal solution set.
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