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Introduction
Linear programming

Three basic forms of linear programs
f(A,b,c) = minc’x subject to Ax = b, x >0,

f(A,b,c) = minc’x subject to Ax < b,
f(A, b, c) = min c"x subject to Ax < b, x > 0.

Notation
An interval matrix

A=[AA={AcR™"|A<A<A}

The center and radius matrices

1 — 1
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Introduction

Interval linear programming
Family of linear programs with A€ A, b€ b, c € c, in short

f(A,b,c) = minc’x subject to Ax = b, (x >0).

A scenario is a concrete linear program in this family.

The three forms are not transformable between each other! )

@ determine the optimal value range;

@ determine a tight enclosure to the optimal solution set.
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Complexity of basic problems

Ax=b, x>0 Ax <b Ax<b, x>0

strong feasibility NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial
strong . .

_ I I | I

unboundedness NP-hard polynomia polynomia

weak suff. / necessary  suff. / necessary olvnomial

unboundedness conditions only conditions only poly
strong | il
optimality NP-hard NP-hard polynomia

weak optimality

optimal value
range
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f polynomial
f NP-hard

suff. / necessary
conditions only

_f NP-hard
f polynomial
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Optimal value range

Definition

:=minf(A, b,c) subjectto A€ A, beb, cec,

f
f:=maxf(A,b,c) subjectto ACA, beb, ccc.

4

Theorem (Rohn, 2006)

We have for type (Ax =b, x >0)

f=minc"x subject to Ax < b, Ax > b, x >0,
f= max f(A. — diag(p) Aa, bc + diag(p) ba,©).
pe{£1}m

v

Theorem (Vajda, 1961)

We have for type (Ax <b, x >0)

f=minc"x subject to Ax <b, x>0,
f=minc'x subject to Ax < b, x > 0.
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Optimal value range

Algorithm (Optimal value range [f, f])
@ Compute

f:=inf ¢/ x—cf|x| subjectto x e M,

where M is the primal solution set.
Q If f = oo, then set f := oo and stop.
© Compute

B:=sup bly+ bLly| subjectto y €N,

where N is the dual solution set.
Q If p = oo, then set f := 00 and stop.

© If the primal problem is strongly feasible, then set f=9;
otherwise set f := co.
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Optimal solution set
The optimal solution set

Denote by S(A, b, ¢) the set of optimal solutions to

T

minc’ x subject to Ax=b, x >0,

Then the optimal solution set is defined

S=|J S(Abo).
A€A, beb, cec

Find a tight enclosure to S.
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Optimal solution set

Characterization

By duality theory, we have that x € S if and only if there is some y € R™,
Ac A, beb, and ¢ € c such that

Ax=b, x > 0, ATyS c, c'x= bTy,

where A€ A, beb, cec.

Relaxation

Relaxing the dependencies
Ax=b, x>0, ATy <c c'x= bTy,

which is described by

Ax<b, —Ax<—b, x>0,

Aly — ARly| <e, |c]x—bly| < cfx+ bAlyl.
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Linearization of |y|

Properties

@ The solution set is non-convex in general
@ It is linear at any orthant

@ NP-hard to obtain exact bounds

Theorem (Beaumont, 1998)
For every y € y C R with y <y one has

ly| < ay + B, (1)

where

a= =W s v

y—y y -

Yyl -

< |I<

Moreover, if y > 0 ory < 0 then (1) holds as equation.
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Linearization of |y|

Now, the linearization reads

Ax <b, —Ax < —b, x >0,
(Al — AL diag(a) )y < T+ ALB,
cTx+ (b7 — b ding(a) )y < bZB.
—eTx+ (bT b} diag(a) )y < bl s,

where
lyil=lyil . _
il & .

Qj = Yi=Yi Vs Yis
sgn(y;) if yi=yi
Yilyil=yilyil _
e =70 f P < Vi

Bi = Yi=Yi nLS
0 |f X,’ = yl'.

4
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Contractor

Algorithm (Optimal solution set contractor)

© Compute an initial interval enclosure x°, y°

Q /=0

© repeat
@ compute the interval hull x’,y’ of the linearized system;
Q@ i =i+1;

@ until improvement is nonsignificant;

O return x':

Properties

@ Each iteration requires compting the interval hull
(2(m + n) linear programs).

@ In practice, it converges quickly, but not to S in general.
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Example

Consider an interval linear program

min —[15,16]x; — [17,18]x> subject to
x < [10,11],
—x1 + [5,6]x < [25,26],
[6,6.5]x -+ [3,4.5]x < [81,82],
—x; < —1,
x1 — [10,12]x < —[1,2].

Take the initial enclosure

x® =1000- ([-1,1], [-1,1])7,
y® = 1000 - ([0,1], [0, 1], [0,1], [0,1], [0,1])".
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Example

Example (cont.)

The iterations of the procedure go as follows
=1000- ([-1,1], [-1,1]) T,
y® = 1000- ([0, 1], [0, 1], [0, 1], [0, 1], [0, 1]) ",
x' = ([1,11], [-568,916])7,
y' = ([0, 1000], [0, 936], [0, 358], [0, 1000], [0,572]) ",
x* = ([1,11], [-17.2,72]) 7,
y? = ([0,190], [0,58.5], [0,24.3], [0, 176], [0, 34.6])",
x> = ([3.78,11], [1.91,9.80]) ",
y> = ([0, 30.6], [0, 6.98], [4.71], [0,17.1], [0,3.09]) ",
x* = ([6.65,11], [2.66,7.21]) T,
y* = ([0,22.5], [0.08,4.33], [0, 3.67], [0,8.81], [0,1.47])".
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Example

Example (cont.)

=N WS oo N

0 1234567 89101112
@ In grey the largest and the smallest feasible area.

@ The final enclosure of the optimal solution set S is dotted.

4
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Basis stability

Definition

The interval linear programming problem

minc’ x subject to Ax=b, x >0,

is B-stable if B is an optimal basis for each scenario.

Theorem

B-stability implies that the optimal value bounds are

f = min QEX subject to Agxg < b, —Agxg < —b, xg >0,
f = max EEX subject to Agxp < b, —Agxg < —b, xg > 0.

Under the unique B-stability, the set of all optimal solutions reads

Apxg < b, —Agxg < —b, xg >0, xy =0.
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Basis stability

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAZ Ay > 0T,

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, b€ b, c € c.
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Basis stability

Condition C3 holds true if and only if for each q € {£1}™ the polyhedral
set described by
((Ac)s — (Aa)é diag(q))y < Ts,
~((Ac)g + (Aa) diag(q))y < —cs,
diag(q)y =0
lies inside the polyhedral set

(AR + (Aa)f diag(q))y < ey, diag(q)y > 0.
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Conclusion

Open problems

o A sufficient and necessary condition for weak unboundedness, strong
boundedness and weak optimality.

@ A method to check if a given x* € R" is an optimal solution for some
scenario.

A method for determining the image of the optimal value function.

A sufficient and necessary condition for duality gap to be zero for
each scenario.

A method to test if a basis B is optimal for some scenario.

Tight enclosure to the optimal solution set.
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