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Abstract. Let E(y) = Xb be the traditional linear regression model and let b̂
be an estimate of the unknown vector of regression parameters b. The tolerance
quotient δ∗, defined and studied by Hlad́ık and Černý in (Interval regression
by tolerance analysis approach, preprint in KAM-DIMATIA Series 963, 2010)
is the least δ ≥ 0 such that for any i, the equation yi = Xiβ, where yi is
the i-th observation of the dependent variable and Xi is the i-th row of X, is
satisfied with some β ∈ [̂b−δ · |̂b|, b̂+δ · |̂b|]. The tolerance quotient δ∗ measures
the relative perturbation rate, i.e. how much it is necessary to perturb the
estimated regression coefficients b̂ to satisfy each of the equations yi = Xiβ, and
hence is a measure of goodness of fit of the model. We demonstrate the usage
of the quotient in analysis of both crisp and interval data and, in particular,
interval data arising in econometrics and finance. We show a method to study
probabilistic properties of the tolerance quotient: we derive the distribution of
δ∗ and, under certain assumptions, we present a method for construction of a
confidence interval for δ∗.
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1 Introduction

The traditional linear regression model E(y) = Xb describes the response of the dependent variable y as
a linear function of dependent variables X. The vector b of regression parameters is unknown and it is to
be estimated. The most common estimator is OLS: that is, finding b̂ such that the L2-norm of residuals
r := y−Xb̂ is minimized. In robust regression, L1-norm is often used instead of L2; it is well known that
this minimization problem is reducible to linear programming.

The traditional approach assumes that the observed values of independent variables (the rows of the
design matrix X) and observations of the dependent variable (the components of the vector y) are crisp,
i.e. they are real (or rational) numbers. In many practical applications, some or all of the values X and y
cannot be directly observed; they might be uncertain or fuzzy. Only an interval, in which the unobservable
value is guaranteed to be, is known.† In this context it makes sense to generalize the traditional linear
regression model to be able to handle intervals.

Interval variables appear in economic and financial applications quite often, for example:

� traded variables have bid-ask spread;
� credit rating grades are sometimes regarded as intervals of credit spreads above the risk-free yield

curve (though this interpretation is simplified);
� if we measure economic variables such as personal income, we sometimes obtain underestimated

observations due to the presence of the ‘grey zone’. For example, if personal income Y is measured by
means of the income declared, the true income is likely to be in an interval [Y, Y + ∆Y ] where ∆Y is
an upper bound for ‘grey’ (undeclared) income;
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� there is a similar problem with demographic data, e.g. true immigration is in an interval [I, I + ∆I ]
where I is observed legal immigration and ∆I is an (estimated) upper bound on illegal immigration;

� dynamic macroeconometric regression models often include variables such as foreign exchange rates or
interest rates, that are not constant within a given period. Usually, the median or the average value is
taken as a proxy. However, it might be more appropriate to regard that variable as an interval within
which the variable changes over the period;

� individual data are available only in an interval-censored form.

More applications of interval data analysis and related methods are discussed in [2, 5, 6, 7, 9, 14].

Various versions of interval regression models have been proposed and studied, see e.g. [8]:

� crisp input – interval output model. The matrix X is crisp (i.e. it is a matrix of real numbers) and y
is an interval vector.

� interval input – crisp output model. X is an interval matrix and y is a crisp vector.
� interval input – interval output model. Both X and y are intervals.

In this context, the traditional regression model is called crisp input – crisp output model.

Several concepts of interval regression have been proposed [8, 11, 13]: the best known approaches are
the possibility concept and the necessity concept. They will be discussed in Sect. 2.

We use boldface for interval matrices. If Xij ≤ Xij for all i and j, then the interval matrix X = [X,X]
is the set {X : (∀i)(∀j)Xij ∈ [Xij , Xij ]}, where Xij is the (i, j)-th component of the matrix X. The
interval vector y = [y, y] is a one-column interval matrix. Its i-th component is denoted yi (= [y

i
, yi]).

Interval regression models are much more difficult to handle than the traditional linear regression
models. Just to illustrate the difficulties, consider one of the most fundamental problems: to describe
the set of OLS solutions to the interval regression model. In the most general case of the interval input –
interval output, the set of OLS solutions is B := {b : XTXb = XTy, X ∈X, y ∈ y}. What can be said
about this set? Very little is known. In general, this set need not be bounded and need not be convex.
If it is bounded, only very rough and computationally expensive coverings of the set are known, see e.g.
[10]. But the situation is even worse: deciding whether B is bounded is a co-NP-complete problem [10].

In the case of the crisp input – interval output model, i.e. if X = X, the set B is a zonohedron
[15]. This might rise hope that it could be possible to describe the set easily. However, the polyhedron
might suffer from a quite complex combinatorial structure. It has (in general) Θ(nd) vertices, where n
is the dimension of the interval vector (cube) y and d is the number of regression parameters. So it is
apparent that even for quite small n and d (say, n = 100 and d = 4) it is computationally very hard to
describe the set B by vertex enumeration. And, moreover, for a user of such a model, this description is
not very friendly. It would be natural to describe the zonohednon by linear inequalities; unfortunately,
no computationally feasible method is known (to the authors’ knowledge).

These are only a few difficulties arising from the inclusion of interval data in regression models. So,
other approaches for handling interval regression models have been sought. We shall deal with one such
approach, known as the tolerance approach; for further references see [4, 5].

2 The tolerance quotient

Let Xj denote the j-th row of a matrix X. The absolute value |X| of a matrix X is understood compo-
nentwise.

First we deal with the simplest case of the crisp input – crisp output model; then we will generalize
the ideas to interval models.

Crisp input – crisp output model. Let y and X be crisp and let b̂ be an estimate of the vector
of regression parameters b; for example, take the OLS estimate b̂ = (XTX)−1XTy. Let n denote the
number of observations and d number of regression parameters. The tolerance quotient δ∗ is the minimal
δ ≥ 0 such that

(∀j ∈ {1, . . . , n})(∃β ∈ [̂b− δ · |̂b|, b̂− δ · |̂b|]) yj = Xjβ. (1)

That is, δ∗ is the minimal perturbation rate: it is sufficient to perturb the estimated regression coefficients
β̂ by no more that 100δ∗% to fulfill each equality in the system y = Xβ. So, the tolerance quotient is a
measure of goodness-of-fit of the model, an alternative measure to the classical statistics such as R2.



The basic theorem of the tolerance approach to regression has been proved in [3] and [5]. By conven-
tion, the value of a fraction with a zero denominator is zero.

Theorem 1. If there is j ∈ {1, . . . , n} such that |X|j · |β̂| = 0 and yj 6= Xj b̂ then no δ satisfies (1).
Otherwise

δ∗ = max
1≤j≤n

|yj −Xj b̂|
|X|j · |̂b|

. (2)

Before we turn to interval models, let us discuss some properties and possibilities to use the tolerance
quotient in analysis of crisp input – crisp output models.

Computability. Observe that δ∗ is very easily computable. Indeed, to evaluate the expression (2) we
need linear computation time only.

Goodness-of-fit measure. Let b̂1 and b̂2 be two different estimates of b obtained by two different
methods (e.g. by OLS and L1-norm minimization of residuals). The lower of the tolerance quotients δ∗bb1
and δ∗bb2 (given by (2) with b̂ := b̂1 and b̂ := b̂2, respectively) is an indication which estimate should be
preferred.

Detection of outliers. It is apparent that existence of outliers in data might significantly increase the
tolerance quotient. Hence, the j-th point yj , where j is the argmax of (2), is likely to be an outlier (if
outliers are really present). This suggests a simple procedure for removal of outliers: remove those points,
the removal of which decreases the tolerance quotient significantly.

Detection of change points. Regression models sometimes suffer from the existence of structural
breaks. In econometrics it is a frequent case; for example, a structural break in a dynamic model may
appear in the period when the exchange-rate regime changes, or it may appear with some lag. The
structural break, or the change point, is the index κ ∈ {1, . . . , n− 1} such that

E(yj) =

{
Xjb1 for j = 1, . . . , κ,
Xjb2 for j = κ+ 1, . . . , n,

where b1 6= b2. There are various methods for testing the existence of structural breaks and there are
various methods for estimation of κ (regarded as an unknown parameter, see [1]). The tolerance quotient
might be an alternative approach for detection of the location of a structural change. Let

δ∗k1:k2
= max
k1≤j≤k2

|yj −Xj b̂k1:k2 |
|X|j · |̂bk1:k2 |

, (3)

where b̂k1:k2 is an estimator for the model E(yk1:k2) = Xk1:k2b. We have denoted yk1:k2 = (yk1 , yk1+1, . . . ,
yk2)T and Xk1:k2 = (XT

k1
, XT

k1+1, . . . , X
T
k2

)T. For example,

b̂k1:k2 =

{
(XT

k1:k2
Xk1:k2)−1XT

k1:k2
yk1:k2 if XT

k1:k2
Xk1:k2 is regular,

undefined otherwise.

By convention, if b̂k1:k2 is undefined, then |yj−Xj
bbk1:k2 |

|Xj |·|bbk1:k2 |
=∞.

If we want to estimate the point of the structural break, we might inspect the values dk := max{δ∗1:k,
δ∗k+1:n}; the point argminkdk may be an indicator for the location of the structural break. More in
general, the behavior of the series δ∗1:k and δ∗k+1:n may give information complementary to the traditional
methods for estimation of changepoints.

Crisp input – interval output model. Now assume that y = [y, y] and that β̂ is available. The
usual choice is b̂ = (XTX)−1XT · 12 (y+y). At least three approaches for the crisp input – interval output
model are considered in literature: the possibilistic concept

(∀j ∈ {1, . . . , n})(∀υj ∈ [y
j
, yj ])(∃β ∈ [̂b− δ · |̂b|, b̂+ δ · |̂b|]) υj = Xjβ,

the weak possibilistic concept

(∀j ∈ {1, . . . , n})(∃υj ∈ [y
j
, yj ])(∃β ∈ [̂b− δ · |̂b|, b̂+ δ · |̂b|]) υj = Xjβ,



and the necessity concept

(∀j ∈ {1, . . . , n})(∀β ∈ [̂b− δ · |̂b|, b̂+ δ · |̂b|])(∃υj ∈ [y
j
, yj ]) υj = Xjβ.

Again, we are searching for δ∗, the minimal δ ≥ 0 fulfilling the chosen concept. It is interesting that the
first two cases are reducible to the crisp input – crisp output model (2).

Theorem 2 ([3]). The tolerance quotient δ∗ for the possibilistic concept is given by (2) with

yj =

{
y
j

if |y
j
−Xj b̂| ≥ |yj −Xj b̂|,

yj otherwise.

The tolerance quotient δ∗ for the weak possibilistic concept is given by (2) with

yj =





y
j

if y
j
> Xj b̂,

Xj b̂ if Xj b̂ ∈ [y
j
, yj ],

yj otherwise.

For the neccessity concept it holds

δ∗ = min
1≤j≤n

min




yj −Xj b̂

|X|j · |̂b|
,
Xj b̂− yj
|X|j · |̂b|



 ,

where, by convention, the value of a fraction with a zero denominator is ∞.

Interval input – interval output model. In the interval input – interval output models, there are
even more solution concepts. It is interesting that many of them are also reducible to the crisp input –
crisp output case. We shall not discuss them any more; see [3].

3 The distribution of δ∗

We have demonstrated the usefulness of the tolerance quotient δ∗ in the crisp input – crisp output model.
On one hand, it is useful in analysis of traditional regression models as discussed in Sect. 2. On the other
hand, it is useful for tolerance analysis of interval regression models as optimal tolerance rates of many
solution concepts of the interval models, both crisp input – interval output and interval input – interval
output, are reducible to the crisp input – crisp output case.

Now we show some probabilistic properties of δ∗ in the crisp input – crisp output model.

So far we have treated yj ’s as fixed observations. To get some insight, what values of δ∗ we shall
expect, assume that yj , j = 1, . . . , n, are independent normal variables with means Xjb and a common
standard error σ > 0. (These are traditional assumptions in regression analysis.) Then, δ∗ may be
regarded as a random variable. Let ϕ(σ;x) := (2πσ2)−1/2 exp

(
− x2

2σ2

)
and Φ(σ;x) :=

∫ x
−∞ ϕ(σ; t) dt.

Denote

Φ∗j (z) :=





0 if z ≤ 0,
2Φ( σ

|X|j ·|b| ; z)− 1 if z > 0 and |X|j · |b| > 0,

1 if z > 0 and |X|j · |b| = 0

.

and let ϕ∗j be the derivative of Φ∗j :

ϕ∗j (z) :=

{
0 if z ≤ 0 or (z > 0 and |X|j · |b| = 0),
2ϕ( σ

|X|j ·|b| ; z) if z > 0 and |X|j · |b| > 0.

Theorem 3. The density of δ∗ is

ϕδ∗(z) :=
n∑

j=1

ϕ∗j (z) ·
∏

k 6=j
Φ∗k(z). (4)



Proof. We may write δ∗ = max1≤j≤n |rj |, where rj := yj−Xjb
|X|j ·|b| ; by convention, the value of a fraction

with a zero denominator is zero. Observe that rj ’s are independent normal variables with zero means
and standard errors σ

|X|j ·|b| . Hence the cumulative distribution function of |rj | is Φ∗j . By independence
of rj ’s,

Pr[δ∗ ≤ z] = Pr[max
j
|rj | ≤ z] = Pr[(∀j ∈ {1, . . . , n})|rj | ≤ z] =

n∏

j=1

Φ∗j (z).

Differentiating this expression we obtain (4).

Example. Consider the following data [12]:

j 1 2 3 4 5 6 7 8 9 10
xj 2 4 6 8 10 12 14 16 2 16
yj 14 16 14 18 18 22 18 22 4 32

Let us fit the model E(yj) = b0 + b1xj using two estimators. The first is OLS: we get n[1] = 10,
b̂[1] = (8.1233, 1.0752)T and σ̂[1] = 4.3603. Now let us use another estimator: an OLS estimator equipped
with a procedure for detection and exclusion of outliers. At the ‘first sight’, the outliers are j = 9 and
j = 10. If we exclude them, we get the OLS estimate n[2] = 8, b̂[2] = (12.9286, 0.5357)T and σ̂[2] = 1.793.

Assume that estimated regression parameters are the true ones, i.e. b = b̂[k] for k = 1 and k = 2,
respectively, and that σ = σ̂[k] for k = 1 and k = 2, respectively. The corresponding distributions ϕδ∗ are
plotted in Figure 1. Observe that in the case without outliers, the probability that δ∗ ≥ 1 is negligible.
This is interesting: note that if δ∗ ≥ 1, then the tolerance interval for regression parameters contains
zero which is an indicator that the regression model is not suitable for the data observed. The shapes
of the distributions indicate that the model with outliers excluded fits the data significantly better. The
Figure also shows that in the case without outliers, if b = b̂[2] and σ = σ̂[2], ‘almost all’ realizations of the
random disturbances of the regression model lead to the quotient δ∗ being below 40%.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

A 

B 

Figure 1: Distribution of δ∗ for the model without outliers (A) and with outliers (B).

4 The confidence interval for δ∗

Intuitively, the OLS estimate b̂ is ‘the best’ estimate of the unknown value b. Having estimated b̂ by
OLS, we compute δ∗ as a function of b̂ as the exact value b is not known. Let us denote δ∗(β) =
max1≤j≤n

|yj−Xjβ|
|X|j ·|β| ; now δ∗ in (2) is δ∗(̂b). Denote δ∗true := δ∗(b). Our aim is to construct an upper bound

δ∗ for δ∗true in terms of the known variables. Then, the interval [0, δ∗] may be called a confidence interval
for the unknown value δ∗true .

Recall that the α-confidence ellipsoid for b, denoted Eα, is the least-volume ellipsoid centered at b̂
with the property that it covers the true value b with probability at least α. It is of the form Eα = {β :
(β − b̂)XTX(β − b̂)T ≤ d · σ̂2 · Fd,n−d(α)}, where Fd,n−d stands for the F -distribution with d and n− d



degrees of freedom and σ̂2 is the standard estimator of variance (σ̂2 = 1
n−d (y − Xb̂)T(y − Xb̂)). It is

interesting that under some sign-invariancy assumptions, it is possible to write down an easily-computable
expression for δ∗.

Theorem 4. Let α ∈ (0, 1), let X be a positive matrix and let Eα lie in the positive orthant of Rd. Define

δ∗ := max
1≤j≤n

max





yj

Xj b̂+ (−1)1−sign(yj) ·
√

d·cσ2·Fd,n−d(α)

XjXT
j

·Xj(XTX)−1/2XT
j

− 1,

1− yj

Xj b̂+ (−1)sign(yj) ·
√

d·cσ2·Fd,n−d(α)

XjXT
j

·Xj(XTX)−1/2XT
j




.

Then δ∗true ≤ δ∗ with probability at least α.

The proof is omitted; it is available by the authors. The sign-invariancy assumptions may be further
relaxed; however, then there is no compact expression for δ∗. But the situation is not bad: the compu-
tation of δ∗ may be reduced to a family of (computationally quite easy) convex optimization problems.

Probabilistic properties of δ∗, both in crisp and interval models, are subject of further research.
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