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ABSTRACT. We investigate multiobjective linear programming problems with objective
coefficients varying inside given intervals. A feasible solution x∗ is called necessarily efficient
if it is efficient for all realizations of the interval objective function coefficients. Testing nec-
essarily efficiency may be computationally expensive. Thus we propose one sufficient and also
one necessary condition for necessarily efficiency that can significantly speed up decision al-
gorithms. These conditions do not require the feasible solution x∗ to be non-degenerate. We
demonstrate usage of both conditions on illustrative examples and show how strong they are.
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1 INTRODUCTION

In many real-life situations we come across problems with imprecise input values. Imprecisions
are dealt with by various ways. One of them is interval based approach in which we model
imprecise quantities by intervals, and suppose that the quantities may vary independently and
simultaneously within their intervals.

In this paper, we investigate multiobjective linear programming (MOLP) problems in which
objective function coefficients perturb within prescribed intervals. Interval MOLP was investi-
gated by many authors using different approaches; an overview on interval MOLP was given by
[Oliveira and Antunes, 2007]. Solving interval MOLP via preference ordering between intervals
for was considered e.g. in [Chanas and Kuchta, 1996, Sengupta and Pal, 2009]. More attention
was paid to possible and necessary efficiency. A solution is possibly efficient if it is efficient for at
least one realization of interval objective function coefficients. Some fundamentals were stated
by [Inuiguchi and Sakawa, 1996], and generation of all possibly efficient solution was investi-
gated by [Wang and Wang, 2001a, Wang and Wang, 2001b] and [Ida, 1996]. More general ap-
proach involving uncertainties not only in the objective function coefficients but also in the con-
straints was considered e.g. in [Ida, 2007, Oliveira and Antunes, 2009, Urli and Nadeau, 1992].

Notion of necessarily efficiency is probably the most important concept of solution to interval
MOLP since it ensures that a feasible point considered is efficient for all realizations of interval
data. Some basic properties and theoretical foundations for necessarily efficiency were discussed
in [Bitran, 1980, Inuiguchi and Sakawa, 1996, Oliveira and Antunes, 2007]. A branch & bound
implicit enumeration algorithm for testing necessarily efficiency of a non-degenerate basic
solution was proposed by [Bitran, 1980], and later improved by [Ida, 1999]. An exponential
enumeration method for an arbitrary feasible point in case of just one criterion was presented
by [Inuiguchi and Sakawa, 1994], and the whole necessarily efficient solution set generation by
[Ida, 1996]. An application to portfolio selection problem can be found in [Ida, 2003, Ida, 2004].
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There are problems closely related to interval MOLP. For instance, [Wang and Wang, 1997,
Wang and Wang, 2001b] reduced fuzzy MOLP problems to parametric interval MOLP ones.
[Benjamin, 2004] employed interval multi-objective programming for solving real-valued multi-
objective decision problems by a branch & bound method; an application in robot controlling
is studied in [Benjamin, 2002].

This paper is a contribution to necessarily efficiency testing. In Section 3 we give a novel
characterization of necessarily efficiency. Sice the present methods for testing necessarily ef-
ficiency are computationally expensive (exponential in the worst case) there is a need for
their accelerating. By using effective sufficient or necessary conditions we may significantly
improve average time complexity; compare the conditions by [Inuiguchi and Sakawa, 1994] for
one-objective case. In Section 3.1 we introduce an extension of the sufficient condition by
[Bitran, 1980] and in Section 3.2 we propose a new necessary condition.

Throughout the paper, Ai,∗ denotes the i-th row of a matrix A, and e a vector of ones (with
convenient dimension). A diagonal matrix with entries z1, . . . , zn is written as diag(z).

2 PRELIMINARIES

A multiobjective linear programming (MOLP) problem reads

max
x∈M

Cx, (1)

where the feasible set M := {x ∈ Rn | Ax ≤ b}, C ∈ Rs×n, A ∈ Rm×n and b ∈ Rm. A feasible
solution x∗ to (1) is called efficient if there is no x ∈ M such that Cx ≥ Cx∗ with at least
one strict inequality; we denote it briefly Cx 	 Cx∗.

Efficiency of points may be characterized by tangent and normal cones [Nožička et al., 1988,
Rockafellar and Wets, 2004]. The tangent cone of M at the point x∗ is defined

T (x∗) := {x ∈ Rn | AP x ≤ 0},

where P := {i | Ai∗x
∗ = bi} and AP denotes the submatrix of A consisting of the rows indexed

by P . The normal (polar) cone [Nožička et al., 1988, Rockafellar and Wets, 2004] of M at the
point x is defined as

N (x∗) : = {x ∈ Rn | xT y ≤ 0 ∀y ∈ T (x∗)}

= {AT
P u ∈ Rn | u ∈ R|P |, u ≥ 0}.

The extremal directions of the cone N (x∗) are constituted by the rows of the matrix AP . Since
N (x∗) is a convex polyhedral cone, it can by described by means of linear inequalities

N (x∗) = {x ∈ Rn | Dx ≤ 0},

where D ∈ Rr×n is an appropriate matrix. To determine such a description is an expensive
task in general [Padberg, 1999]. One way is to compute all extremal directions hi, i ∈ I, of
T (x∗) to obtain the desired description

N (x∗) = {x ∈ Rn | hT
i x ≤ 0 ∀i ∈ I}.

For this task we can utilize the algorithm by Chernikova [Chernikova, 1965, Kuz, 1966] or the
double description algorithm [Padberg, 1999]. Notice that extreme direction generation was
also used e.g. by [Ida, 2005].
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As long as x∗ is a non-degenerate basic solution corresponding to a basis B ⊆ {1, . . . ,m} then
the normal cone reads

N (x∗) = {x ∈ Rn | (AT
B)−1x ≥ 0},

that is, D is effectively computable and D = −(AT
B)−1.

Normal and tangent cones relate to efficiency in the following way. A point x∗ ∈ M is efficient
if and only if there is some positive combination of objectives lying inside N (x∗). In other
words, if and only if DCT λ ≤ 0 for some λ ∈ Rs, λ > 0. A point x∗ ∈ M is not efficient if and
only if there is y ∈ T (x∗) such that Cy 	 0.

In this paper, we suppose that the objective functions coefficients are not known precisely. We
are given only some lower and upper bounds as follows cij ≤ cij ≤ cij, i = 1, . . . , s, j = 1, . . . , n.
Define an interval matrix

C := [C,C] = {C ∈ Rs×n | cij ≤ cij ≤ cij, i = 1, . . . , s, j = 1, . . . , n}.

The corresponding midpoint matrix and radius matrix are denoted respectively by Cc :=
1

2
.(C + C) and C∆ := 1

2
.(C − C). By an interval MOLP problem we understood a family of

problems

max
x∈M

Cx, where C ∈ C. (2)

A feasible solution x∗ is called necessarily efficient if it is efficient to (1) for every C ∈ C.

3 NECESSARILY EFFICIENCY

Lemma 1. The inequality Cx 	 0 is true for some C ∈ C if and only if Ccx + C∆|x| 	 0.

Proof. It is a slight modification of Gerlach theorem [Fiedler et al., 2006, Gerlach, 1981]. If
Cx 	 0, then

0 � Ccx + (C − Cc)x ≤ Ccx + |C − Cc||x| ≤ Ccx + C∆|x|.

Conversely, suppose that Ccx + C∆|x| 	 0. Define z = sgn(x). Then |x| = diag(z)x and

0 � Ccx + C∆diag(z)x = (Cc + C∆diag(z))x.

Since C := Cc + C∆diag(z) ∈ C, the proof is completed.

Remind that the tangent cone to M at the point x∗ is described by the inequality system
AP x ≤ 0. Below, we present a characterization of necessarily efficiency.

Theorem 1. The vector x∗ is necessarily efficient if and only if the system

Ccx + C∆|x| 	 0, AP x ≤ 0, eT |x| = 1 (3)

has no solution.

Proof. The vector x∗ is efficient to (1) with fixed C ∈ C iff

Cx 	 0, AP x ≤ 0 (4)

has no solution [Ehrgott, 2005]. Thus x∗ is necessarily efficient iff there is no C ∈ C such that
(4) is solvable. By Lemma 1, this is true iff

Ccx + C∆|x| 	 0, AP x ≤ 0

is not solvable. Using L1-norm to normalize x we obtain the final form of (3).
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Observe that Theorem 1 gives rise to a simple but expensive algorithm for testing necessarily
efficiency. Decomposing (3) according to signs of particular xi-s we can provide the testing by
solving up to 2n linear programs. System (3) is solvable iff the systems

Ccx + C∆|x| − y ≥ 0, AP x ≤ 0, y ≥ 0, eT y ≥ 1

is solvable, or equivalently, iff the linear system

Ccx + C∆diag(s)x − y ≥ 0, AP x ≤ 0, diag(s)x ≥ 0, y ≥ 0, eT y ≥ 1 (5)

is solvable for all s ∈ {±1}n. Herein, |xi| was linearized by sixi, where si is a sign of xi.
The number may be sometimes decreased when we employ sign restriction on variables xi-s.
Suppose that the system AP x ≤ 0 contains some non-negativity constraints xi ≥ 0, i ∈ I for
certain I ⊆ {1, . . . , n}; non-positive variables are handled in a similar manner. Then we fix
si := 1 for each i ∈ I, and hence it suffices to check solvability of (5) for all s ∈ {±1}n such
that si = 1, i ∈ I and si = ±1, i 6∈ I. We reduced the number of possibilities to 2n−|I|, which
can still be very high.

Notice that there are another algorithms of exponential time complexity, e.g. that one intro-
duced by [Inuiguchi and Sakawa, 1994] for one-criterion case, or that by [Ida, 1996].

3.1 Necessary efficiency: a sufficient condition

Testing necessarily efficiency is a bit costly. That is why exploiting necessary or sufficient con-
ditions may speed up significantly the decision process. We present a sufficient condition first,
which improves that one by [Hlad́ık, 2008] and extends the Bitran’s condition [Bitran, 1980]
for any feasible solution.

Theorem 2 (sufficient condition). Define the matrix M ∈ Rr×s componentwise as

mij :=
n

∑

k=1

dikckj(dik),

where

ckj(dik) :=

{

ckj if dik ≥ 0,

ckj if dik < 0.

If the linear system

Mλ ≤ 0, λ ≥ e (6)

is solvable then x∗ is necessarily efficient.

Proof. Let λ be a solution to (6) and C ∈ C. It suffices to show that DCTλ ≤ 0 holds true.
Since dikckj ≤ dikckj(dik) we get

n
∑

k=1

dikckj ≤
n

∑

k=1

dikckj(dik).

Therefore DCT ≤ M , whence DCT λ ≤ Mλ ≤ 0 follows.
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Note that (6) can be equivalently formulated as DC
T λ ≤ 0, λ ≥ e by using interval arithmetic

[Alefeld and Herzberger, 1983].

Generally, the proposed sufficient condition is not the necessary one. The reason is that M is
entrywise the best upper bound for DCT , C ∈ C, but the particular maximizers are attained
for different matrices C ∈ C.

To use the sufficient condition presented in Theorem 2 we have to check solvability of a linear
system of inequalities. This is an easy task for a linear programming solver. Moreover, we
accelerate the decision process when we check a promising candidate for a solution to (6). For
instance, such a candidate may be a vector of weights proving efficiency of x∗ for some C ∈ C

(typically the midpoint matrix).

As long as x∗ is non-degenerate, the proposed sufficient condition is very cheap; it requires
just to solve one linear program to check solvability of a linear system (6). If it is not the
case, calculation of D might be computationally expensive. We can overcome this drawback
by computing only a subset of N (x∗) that correspond to any feasible basis. Particularly, take
any feasible basis B ⊆ {1, . . . ,m} corresponding to x∗ and put D := −(AT

B)−1. Then the
inequality system Dx ≤ 0 determines a part of the normal cone N (x∗). The method remains
still valid, but the sufficient condition will be weaker. Nevertheless, it can happen that x∗ is
necessarily efficient even though it is confirmed for no subpart corresponding to any feasible
basis.

Notice that for a non-degenerate basic solution x∗ our condition coincides with the stopping
criterion in the branch & bound method used by [Bitran, 1980]. Thus our approach generalizes
Bitran’s results to possibly degenerate point. In this manner we can extend the Bitran’s implicit
enumeration method to an arbitrary feasible point.

Example 1. Let us consider an example by [Inuiguchi and Sakawa, 1996] with two objectives:

C =

(

[2, 3] [1.5, 2.5]
[3, 4] [0.5, 0.8]

)

, A =













3 4
3 1
0 1
−1 0
0 −1













, b =













42
24
9
0
0













.

We want to check whether a feasible solution x∗ = (6, 6)T is necessarily efficient. Since x∗ is a
non-degenerate basic solution corresponding to the basis B = {1, 2} we compute the normal
cone at x∗ as follows

N (x∗) = {x ∈ Rn | −(AT
B)−1x ≤ 0} = {x ∈ R2 | x1 − 3x2 ≤ 0, −4x1 + 3x2 ≤ 0}.

Now, the linear system (6) reads

−1.5λ1 + 2.5λ2 ≤ 0, −0.5λ1 − 9.6λ2 ≤ 0, λ1, λ2 ≥ 1.

Obviously, this system has a solution, e.g. take λ1 = 2, λ2 = 1. Thus (6, 6)T is necessarily
efficient.

3.2 Necessary efficiency: a necessary condition

In the following we are concerned with a necessary condition for necessarily efficiency of x∗.
Necessary conditions were not thoroughly studied even though its importance was observed
already by [Bitran, 1980].
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Let us describe the idea behind our approach. Suppose that x∗ is efficient to (1) for some
C1 ∈ C, but is not efficient to (1) for certain C2 ∈ C. Then we can expect that there is some
k ∈ P such that the vector Ak,∗ (i.e., the extremal direction of N (x∗)) lies in the convex cone
generated by the rows of C1 (or row of another matrix in C), but does not lie in the convex
cone generated by the rows of C2. To find out the matrix certifying necessarily non-efficiency
of x∗ we can proceed in the following manner. Define the direction d := Ak,∗ −

∑

i∈P, i6=k Ai,∗.

Now, determine the matrix C0 ∈ C that its rows are the farest one in the direction of d,
that is, C0

i,∗ = argmaxCi,∗∈Ci,∗
Ci,∗d, i = 1, . . . , s. It is easy to see that c0

ij = cij if dj ≥ 0

and c0
ij = cij otherwise. Because of the construction of C0 we may hope that the convex cone

generated by the rows of C0 contains no point from the convex hull of Ai,∗, i ∈ P . It would
mean that x∗ is not efficient to (1) for the objective matrix C0.

The formal formulation is given in Theorem 3.

Theorem 3 (necessary condition). Let k ∈ P . Put d := Ak,∗ −
∑

i∈P, i6=k Ai,∗ and define

C0 ∈ C column-wise as follows

C0
∗,j =

{

C∗,j if dj ≥ 0,

C∗,j otherwise,

j = 1, . . . , n. If the linear system

C0x − y ≥ 0, AP x ≤ 0, y ≥ 0, eT y = 1. (7)

is solvable then x∗ is not necessarily efficient.

Proof. From definition, C0 comes always from C. The point x∗ is efficient to (1) for the
objective matrix C0 if and only if the linear system (7) is not solvable. If it turns out that x∗

is not efficient for a particular C0 ∈ C then it cannot be necessarily efficient.

We employ the necessary condition in this way: Solve the linear programs (7) for particular
k ∈ P until we find that x∗ is not necessarily efficient, or process every k ∈ P without
conclusion. It requires to solve the total number of at most m linear programs, usually about
n or even less.

Our method runs in polynomial time provided that we solve linear programs by an appropriate
interior point method.

Remark 1. Another approach to a necessary condition is as follows. We may try to find out
or generate a point that—in the case x∗ is not necessarily efficient—dominates x∗ for some
realization of interval data. This candidate may be e.g. a vector in direction to a neighboring
vertex to x∗. That is, if x0 is a neighbor to x∗ then check Cc(x0 − x∗) + C∆|x0 − x∗| 	 0.
This is particularly promising direction if x0 was previously recognized as necessarily efficient
solution.

Example 2. Consider the interval MOLP problem

max Cx subject to Ax ≤ b, x ≥ 0
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with data from [Ida, 1999, Oliveira and Antunes, 2007]

C =





[1, 2] [2, 3] [−2,−1] [3, 4] [2, 3] [0, 1] [1, 2]
[−1, 0] [1, 2] [1, 2] [2, 3] [3, 4] [1, 2] [0, 1]
[3, 4] [0, 1] [1, 2] [1, 2] [0, 1] [−2,−1] [−2,−1]



 ,

A =









1 2 1 1 2 1 2
−2 −1 0 1 2 0 1
−1 0 1 0 2 0 −2
0 1 2 −1 1 −2 −1









, b =









16
16
16
16









.

We want to test necessarily efficiency of the point x∗ =
(

0, 0, 32

3
, 16

3
, 0, 0, 0

)T
along Theorem 3.

Determine P = {1, 4, 5, 6, 9, 10, 11}, where indices greater then four stand for non-negativity
constraints. Put k := 1. Then

d := A1,∗ −
∑

i∈P, i6=1

Ai,∗ = (2, 2,−1, 2, 2, 4, 4).

The corresponding objective function matrix reads

C0 =





2 3 −2 4 3 1 2
0 2 1 3 4 2 1
4 1 1 2 1 −1 −1





and the linear system (7) has a solution x = (0.0417, 0,−0.2085, 0.1667, 0, 0, 0)T and y =
(0.4167, 0.2917, 0.2916)T . Therefore x∗ is not necessarily efficient.

Notice that for k ∈ {5, 6, 9, 10, 11} we obtain the same result, only k = 4 does not certify
necessarily non-efficiency of x∗.

Necessarily efficiency of x∗ can be also disproved along Remark 1. The vertex x∗ is adjacent to
the vertex x0 = (0, 0, 0, 16, 0, 0, 0)T , and for some C ∈ C the vertex x0 dominates to x∗ since

Cc(x0 − x∗) + C∆|x0 − x∗| = (64, 64

3
, 32

3
)T 	 0.

Notice that x0 is necessarily efficient, which may be shown by Theorem 2.

4 NUMERICAL EXPERIMENTS

We carried out some numerical experiments to tell us about the strength of sufficient and
necessary conditions presented in previous sections. The computations were done in MATLAB
7.7.0.471 (R2008b). In accordance with [Bitran, 1980] we considered the interval MOLP in the
form

max
x∈M

Cx, C ∈ C,

where the feasible set was defined as M := {x ∈ Rn | Ax = b, x ≥ 0}. The matrices
Cc, C∆ ∈ Rs×2n, A ∈ Rn×2n and b ∈ Rn were pseudorandomly generated in the following
way. Entries of A were uniformly distributed in [−10, 10] with exception of the first row; that
one was composed of random numbers in [0, 20] in order that the feasible set is bounded. The
right-hand side was set as b := Ae. Entries of Cc were randomly chosen in [−10, 10], too, and
entries of C∆ in [0, R], where R > 0 was a parameter. The number of (s + 1) vertices for
testing of necessarily efficiency were determined as optimal solutions to linear programming
scalarizations maxx∈M eT Ccx and maxx∈M eT

k Ccx, k = 1, . . . , s, where ek denotes the k-th
Cartesian unit vector.
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In each setting of s, n and R we carried out a sequence of 50 runs. The results are displayed
in Table 1. Therein, “efficient” denotes the total number of necessarily efficient points and
“sufficient” the number of them that were recognized by using the sufficient condition. Sim-
ilarly, “non-efficient” denotes the number of necessarily non-efficient points and “necessary”
the number of them that were recognized by using the necessary condition. Thus we have
“efficient”+“non-efficient”= 50(s + 1).

Table 1: Performance of sufficient and necessary conditions.
n s R sufficient efficient necessary non-efficient
5 2 0.01 143 144 4 6
5 4 0.01 249 249 0 1
5 6 0.01 349 349 1 1
5 2 0.1 99 103 27 47
5 4 0.1 203 213 18 37
5 6 0.1 309 329 5 21
5 2 1 0 0 144 150
5 4 1 0 0 247 250
5 6 1 0 0 319 350

10 2 0.01 139 140 6 10
10 4 0.01 242 242 4 8
10 6 0.01 345 345 3 5
10 2 0.1 18 26 75 124
10 4 0.1 60 109 55 141
10 6 0.1 103 217 39 133
10 2 1 0 0 150 150
10 4 1 0 0 250 250
10 6 1 0 0 350 350
15 2 0.01 112 115 12 35
15 4 0.01 230 237 6 13
15 6 0.01 336 342 2 8
15 2 0.1 4 8 116 142
15 4 0.1 4 27 121 223
15 6 0.1 17 101 85 249
15 2 1 0 0 150 150
15 4 1 0 0 250 250
15 6 1 0 0 350 350

As long as the input intervals are tiny (R is small), the sufficient condition is very successful
with the success rate almost 100%, but the necessary condition strikes approximately in 50%.
Whenever the input intervals are wide enough then the situation is converse. In intermediate
cases, both methods are successful in about 50%.

5 CONCLUSION

To accelerate methods for testing necessarily efficiency of x∗ we proposed one sufficient condi-
tion and one necessary condition. Both methods work even when x∗ is a degenerate solution.
However, the former is provable effective provided x∗ is non-degenerate, otherwise it may be
costly. The latter is effective in any way.

The performed numerical experiments revealed that both methods are very effective, and the
success rate is between 20% and 100%, depending mostly on the widths of input intervals.
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