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Introduction

A multiobjective linear programming problem

Consider

max
x∈M

Cx ,

where M = {x ∈ Rn | A ≤ b}, C ∈ Rs×n, A ∈ Rm×n and b ∈ Rm.

An interval problem

Suppose

C ∈ C = [C ,C ] = [Cc − C∆,Cc + C∆].

x∗ ∈ M is necessarily efficient if it is efficient for every C ∈ C.
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Introduction

Tangent cone

The tangent cone of M at the point x∗ is defined

T (x∗) := {x ∈ Rn | APx ≤ 0},

where P := {i | Ai∗x
∗ = bi}.

Normal cone

The normall cone of M at the point x∗ is defined

N (x∗) : = {x ∈ Rn | xT y ≤ 0 ∀y ∈ T (x∗)} = {x ∈ Rn | Dx ≥ 0}

for some D ∈ Rr×n.

Remark

If x∗ is a non-degenerate basic solution corresponding to a basis
B ⊆ {1, . . . ,m} then D = −(AT

B )−1.
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Necessarily efficiency

Theorem

The vector x∗ is necessarily efficient iff the system

C cx + C∆|x | 	 0, APx ≤ 0, eT |x | = 1

has no solution.

. . . gives rise to an exponential algorithm
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Sufficient condition

Theorem (sufficient condition)

Define M := DC
T . If the linear system

Mλ ≤ 0, λ ≥ e

is solvable then x∗ is necessarily efficient.

Remark

mij :=

n
∑

k=1

dikckj (dik), where ckj (dik) :=

{

ckj if dik ≥ 0,

ckj if dik < 0.

Remark

For x∗ a non-degenerate basic solution we get the Bitran’s condition.

M. Hlad́ık (CUNI) Necessarily efficiency in interval MOLP April 15–17, 2010 6 / 14



Sufficient condition

Example (Inuiguchi and Sakawa, 1996)
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Sufficient condition

Example (Inuiguchi and Sakawa, 1996)

Let

C =

(

[2, 3] [1.5, 2.5]
[3, 4] [0.5, 0.8]

)

, A =











3 4
3 1
0 1
−1 0
0 −1











, b =











42
24
9
0
0











,

and a non-degenerate x∗ = (6, 6)T corresponding to the basis B = {1, 2} .
The normal cone at x∗:

N (x∗) = {x | −(AT
B )−1x ≤ 0} = {x | x1 − 3x2 ≤ 0, −4x1 + 3x2 ≤ 0}.

Now, the linear system

−1.5λ1 + 2.5λ2 ≤ 0, −0.5λ1 − 9.6λ2 ≤ 0, λ1, λ2 ≥ 1

is solvable (e.g. λ = (2, 1)T ). Thus (6, 6)T is necessarily efficient.
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Necessary condition

Theorem (necessary condition)

Let k ∈ P. Put d := Ak,∗ −
∑

i∈P, i 6=k Ai ,∗ and define C 0 ∈ C column-wise

as follows

C 0
∗,j =

{

C ∗,j if dj ≥ 0,

C ∗,j otherwise,

j = 1, . . . , n. If the linear system

C 0x − y ≥ 0, APx ≤ 0, y ≥ 0, eT y = 1.

is solvable then x∗ is not necessarily efficient.

Remark

It requires to solve at most m linear programs.

Another necessary condition: for no feasible x0 one has

Cc(x
0 − x∗) + C∆|x0 − x∗| 	 0.
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Necessary condition

Example (Ida, 1999, Oliveira and Antunes, 2007)

Let

max Cx subject to Ax ≤ b, x ≥ 0

where

C =

0

@

[1, 2] [2, 3] [−2,−1] [3, 4] [2, 3] [0, 1] [1, 2]
[−1, 0] [1, 2] [1, 2] [2, 3] [3, 4] [1, 2] [0, 1]
[3, 4] [0, 1] [1, 2] [1, 2] [0, 1] [−2,−1] [−2,−1]

1

A

,

A =

0

B

B

@

1 2 1 1 2 1 2
−2 −1 0 1 2 0 1
−1 0 1 0 2 0 −2
0 1 2 −1 1 −2 −1

1

C

C

A

, b =

0

B

B

@

16
16
16
16

1

C

C

A

.

Consider the point x∗ =
(

0, 0, 32
3 , 16

3 , 0, 0, 0
)T

.

Then P = {1, 4, 5, 6, 9, 10, 11}. For k := 1

d := A1,∗ −
∑

i∈P, i 6=1

Ai ,∗ = (2, 2,−1, 2, 2, 4, 4).
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Necessary condition

Example (cont.)

The corresponding objective function matrix reads

C 0 =





2 3 −2 4 3 1 2
0 2 1 3 4 2 1
4 1 1 2 1 −1 −1





and the linear system has a solution x = (0.042, 0,−0.209, 0.167, 0, 0, 0)T

and y = (0.417, 0.292, 0.292)T . Therefore x∗ is not necessarily efficient.

For k ∈ {5, 6, 9, 10, 11} we obtain the same result.

Another way:

Cc(x
0 − x∗) + C∆|x0 − x∗| = (64, 64

3 , 32
3 )T 	 0.

for the neighboring vertex x0 = (0, 0, 0, 16, 0, 0, 0)T .
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Numerical experiments

In accordance with Bitran (1980) we considered

max
x∈M

Cx , C ∈ C,

where
M := {x ∈ Rn | Ax = b, x ≥ 0}.

Entries of A ∈ Rn×2n uniformly from [−10, 10], the first row from [0, 20],
b := Ae,
entries of Cc ∈ Rs×2n uniformly from [−10, 10],
entries of C∆ ∈ Rs×2n in [0, R ], where R > 0 was a parameter.

Testing (s + 1) solutions to

max
x∈M

eT Ccx

and
max
x∈M

eT
k Ccx , k = 1, . . . , s.

In each setting of s, n and R we carried out a sequence of 50 runs.
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Numerical experiments

n s R sufficient cond. efficient necessary cond. non-efficient
10 2 0.01 139 140 6 10
10 4 0.01 242 242 4 8
10 6 0.01 345 345 3 5
10 2 0.1 18 26 75 124
10 4 0.1 60 109 55 141
10 6 0.1 103 217 39 133
10 2 1 0 0 150 150
10 4 1 0 0 250 250
10 6 1 0 0 350 350
15 2 0.01 112 115 12 35
15 4 0.01 230 237 6 13
15 6 0.01 336 342 2 8
15 2 0.1 4 8 116 142
15 4 0.1 4 27 121 223
15 6 0.1 17 101 85 249
15 2 1 0 0 150 150
15 4 1 0 0 250 250
15 6 1 0 0 350 350
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Conclusion and future work

Conclusion

The sufficient condition is effective, particularly for thin intervals.

The necessary condition is effective, particularly for wide intervals.

⇒ acceleration in testing necessarily efficiency.

Future work

Intervals in the constraints.
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