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Interval linear systems

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A},

and the corresponding center and radius matrices

Ac :=
1

2
(A + A), A∆ :=

1

2
(A − A).

Interval linear systems

Abbreviated by Ax = b, and meaning a family

Ax = b, A ∈ A, b ∈ b.

The solution set is

Σ = {x ∈ R
n | Ax = b, A ∈ A, b ∈ b}.
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Interval linear systems

Example

Consider
(

[1, 2] [0, 4]
[0, 4] −1

)

x =

(

2
2

)
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Interval linear systems

Goal

Find a tight enclosure to the solution set Σ (i.e. an interval vector
containing Σ).

Theorem (Oettli and Prager, 1964)

The solution set Σ is described by

|Acx − bc | ≤ A∆|x | + b∆.

Theorem (Rohn & Kreinovich, 1995)

Finding the optimal enclosure (interval hull) is NP-hard.
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Interval linear systems

Methods

Direct:

Interval Gaussian elimination

Hansen–Bliek–Rohn method (Hansen, 1992, Bliek, 1992, Rohn, 1993)

Iterative:

Interval Gauss–Seidel algorithm

Krawczyk iteration
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Symmetric interval linear systems

The symmetric solution set

Σsym = {x ∈ R
n | Ax = b, A ∈ A, A = AT , b ∈ b}.

Methods

Interval Cholesky method (Alefeld & Mayer, 1993, 2008)

General linear dependence solvers (Jansson, 1991, Rump, 1994,
Popova, 2004, 2007, Popova & Krämer, 2007, Kolev 2004, 20006)

Applications

Truss mechanics

Nodal analysis for linear electrical circuits

Eigenvalue problems
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Symmetric interval linear systems: An example

Example

Consider
(

[1, 2] [0, 4]
[0, 4] −1

)

x =

(

2
2

)

Solution set Σ and the symmetric solution set Σsym:
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Symmetric interval linear systems: Our approach

Algorithm (Symmetric solution set contractor)

1 Compute an initial interval enclosure x0 ⊇ Σsym;

2 i := 0;
3 repeat

1 compute a polyhedral enclosure P of Σsym by using xi ;

2 i := i + 1;

3 compute the interval hull xi of P ;

4 until improvement is nonsignificant;

5 return xi ;
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Description of the symmetric solution set

Theorem (Hlad́ık, 2008)

The symmetric solution set Σsym is described by the following system of
inequalities

A∆|x | + b∆ ≥ |bc − Acx |,
n

∑

i ,j=1

a∆
ij |xixj(pi − qj)|+

n
∑

i=1

b∆
i |xi (pi + qi)|

≥

∣

∣

∣

∣

∣

n
∑

i=1

(bc
i − Ac

i ,∗x)xi (pi − qi)

∣

∣

∣

∣

∣

for all vectors p, q ∈ {0, 1}n \ {0, 1} such that

p≺lex q and (p = 1 − q ∨ ∃i : pi = qi = 0).
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Linearization of bilinear forms

Theorem (Adjiman et al., 1998)

For every x ∈ x ⊂ R and y ∈ y ⊂ R we have

xy ≤ xy + yx − xy ,

xy ≤ xy + yx − xy ,

xy ≥ xy + yx − xy ,

xy ≥ xy + yx − xy .
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Linearization of absolute values

Theorem (Beaumont, 1998)

For every x ∈ x ⊂ R with x < x we have

|x | ≤ αx + β, (1)

where

α =
|x | − |x |

x − x
and β =

x |x | − x |x |

x − x
.

Moreover, if x ≥ 0 or x ≤ 0 then (1) holds as equation.
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Selection of inequalities

Selection of p, q

(S1) p = ek and q = el , where k = 1, . . . , n, l = k + 1, . . . , n,

(S2) p = ek and q = 1 − p, where k = 1, . . . , n,

(S3) make 1
4n2 + 2n random selections of p, q ∈ {0, 1}n with probabilities:

P(pi = 0) =
4

7
, P(pi = 1) =

3

7
,

P(qi = 0) = P(qi = 1) =
1

2
,

(S4) 2n more selections to cut off possibly large part of polyhedron.

Summary

We use 3n2 + 20n inequalities in total.
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Numerical examples

Example (Behnke, 1989)

Consider

A =

(

3 [1, 2]
[1, 2] 3

)

, b =

(

[10, 10.5]
[10, 10.5]

)

.

Results and comparisons:

our algorithm ([1.740, 2.726], [1.740, 2.726])T

The interval hull of Σsym ([1.800, 2.687], [1.810, 2.688])T

The interval hull of Σ ([1.285, 3.072], [1.285, 3.072])T

The Rump inclusion method ([1.623, 2.932], [1.623, 2.932])T

The interval Cholesky method ([0.467, 3.125], [1.125, 4.300])T
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Numerical examples

Example (Random symmetric systems)

Data were generated randomly as follows:

Ac
ij chosen randomly and independently in [−10, 10] ,

A∆
ij := R randomly in [0,R ], where R > 0 is a parameter,

symmetrize Ac := Ac + (Ac)T + 20nI , A∆ := A∆ + (A∆)T ,

bc
i randomly in [−10n, 10n], b∆

i in [0,R ].

Note

Computations in MATLAB with INTLAB,

verifylss computes a fast interval enclosure of Σ,
verintervalhull computes the verified interval hull of Σ.

Efficiency measured by the volume that is cut off, i.e.

∏n
i=1 (x0

i )
∆
−

∏n
i=1 (x∗

i )∆

∏n
i=1 (x0

i )
∆

100%.
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Numerical examples

Example (cont’d)

n R runs exec. time verifylss cut off verintervalhull cut off
5 0.1 100 5.13 s 21.8 % 18.8 %
5 0.5 100 5.52 s 29.5 % 15.6 %
5 1 100 5.71 s 38.0 % 13.1 %

10 0.1 100 56.3 s 36.1 % 31.3 %
10 0.5 100 54.5 s 47.5 % 25.5 %
10 1 100 55.4 s 57.8 % 19.4 %
15 0.1 100 218 s 43.6 % 37.1 %
15 0.5 100 222 s 59.6 % 31.5 %
15 1 100 211 s 72.2 % 23.9 %
20 0.1 50 604 s 51.7 % 44.1 %
20 0.5 50 600 s 68.3 % 36.3 %
20 1 50 573 s 80.9 % 26.5 %
25 0.1 50 1318 s 57.7 % 49.3 %
25 0.5 50 1312 s 75.3 % 41.0 %
25 1 50 1250 s 86.9 % 30.8 %
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