A contractor for the symmetric solution set

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

ICAMEM 2010, Venice, Italy November 24–26

Interval linear systems

Notation

An interval matrix

$$\mathbf{A} := [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A} \},\$$

and the corresponding center and radius matrices

$$A^c := \frac{1}{2}(\overline{A} + \underline{A}), \quad A^{\Delta} := \frac{1}{2}(\overline{A} - \underline{A}).$$

Interval linear systems

Abbreviated by $\mathbf{A}x = \mathbf{b}$, and meaning a family

$$Ax = b$$
, $A \in \mathbf{A}$, $b \in \mathbf{b}$.

The solution set is

$$\Sigma = \{ x \in \mathbb{R}^n \mid Ax = b, \ A \in \mathbf{A}, \ b \in \mathbf{b} \}.$$

Interval linear systems

Example

Consider

M. Hladík (CUNI)

Goal

Find a tight enclosure to the solution set Σ (i.e. an interval vector containing $\Sigma).$

Theorem (Oettli and Prager, 1964)

The solution set Σ is described by

$$|A^c x - b^c| \le A^{\Delta} |x| + b^{\Delta}.$$

Theorem (Rohn & Kreinovich, 1995)

Finding the optimal enclosure (interval hull) is NP-hard.

Methods

Direct:

- Interval Gaussian elimination
- Hansen-Bliek-Rohn method (Hansen, 1992, Bliek, 1992, Rohn, 1993)

Iterative:

- Interval Gauss-Seidel algorithm
- Krawczyk iteration

The symmetric solution set

$$\boldsymbol{\Sigma}_{sym} = \{ x \in \mathbb{R}^n \mid Ax = b, \ A \in \mathbf{A}, \ A = A^T, \ b \in \mathbf{b} \}.$$

Methods

- Interval Cholesky method (Alefeld & Mayer, 1993, 2008)
- General linear dependence solvers (Jansson, 1991, Rump, 1994, Popova, 2004, 2007, Popova & Krämer, 2007, Kolev 2004, 20006)

Applications

- Truss mechanics
- Nodal analysis for linear electrical circuits
- Eigenvalue problems

Symmetric interval linear systems: An example

Example

Consider

$$\begin{pmatrix} \begin{bmatrix} 1,2 \end{bmatrix} & \begin{bmatrix} 0,4 \end{bmatrix} \\ \begin{bmatrix} 0,4 \end{bmatrix} & -1 \end{pmatrix} x = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

Solution set Σ and the symmetric solution set Σ_{sym} :

M. Hladík (CUNI)

Algorithm (Symmetric solution set contractor)

- Compute an initial interval enclosure $\mathbf{x}^0 \supseteq \Sigma_{sym}$;
- i := 0;
- repeat
 - compute a polyhedral enclosure \mathcal{P} of \sum_{sym} by using \mathbf{x}^{i} ;
 - i := i + 1;

③ compute the interval hull \mathbf{x}^i of \mathcal{P} ;

until improvement is nonsignificant;

(3) return \mathbf{x}^i ;

Theorem (Hladík, 2008)

The symmetric solution set Σ_{sym} is described by the following system of inequalities

$$egin{aligned} &A^{\Delta}|x|+b^{\Delta}\geq |b^c-\mathcal{A}^cx|,\ &\sum_{i,j=1}^n a_{ij}^{\Delta}|x_ix_j(p_i-q_j)|+\sum_{i=1}^n b_i^{\Delta}|x_i(p_i+q_i)|\ &\geq \left|\sum_{i=1}^n (b_i^c-\mathcal{A}_{i,*}^cx)x_i(p_i-q_i)
ight| \end{aligned}$$

for all vectors $p,q\in\{0,1\}^n\setminus\{0,1\}$ such that

$$p \prec_{\text{lex}} q$$
 and $(p = 1 - q \lor \exists i : p_i = q_i = 0)$.

Theorem (Adjiman et al., 1998)

For every $x \in \mathbf{x} \subset \mathbb{R}$ and $y \in \mathbf{y} \subset \mathbb{R}$ we have

$$\begin{aligned} xy &\leq \overline{x}y + \underline{y}x - \overline{x}\underline{y}, \\ xy &\leq \underline{x}y + \overline{y}x - \underline{x}\overline{y}, \\ xy &\geq \underline{x}y + \underline{y}x - \underline{x}\overline{y}, \\ xy &\geq \overline{x}y + \overline{y}x - \overline{x}\overline{y}. \end{aligned}$$

Theorem (Beaumont, 1998)

For every $x \in \mathbf{x} \subset \mathbb{R}$ with $\underline{x} < \overline{x}$ we have

$$|\mathbf{x}| \le \alpha \mathbf{x} + \beta, \tag{1}$$

where

$$\alpha = \frac{|\overline{x}| - |\underline{x}|}{\overline{x} - \underline{x}} \text{ and } \beta = \frac{\overline{x}|\underline{x}| - \underline{x}|\overline{x}|}{\overline{x} - \underline{x}}.$$

Moreover, if $\underline{x} \ge 0$ or $\overline{x} \le 0$ then (1) holds as equation.

Selection of inequalities

Selection of p, q

(S1)
$$p = e_k$$
 and $q = e_l$, where $k = 1, \ldots, n$, $l = k + 1, \ldots, n$,

(S2)
$$p = e_k$$
 and $q = 1 - p$, where $k = 1, \ldots, n$,

(S3) make $\frac{1}{4}n^2 + 2n$ random selections of $p, q \in \{0, 1\}^n$ with probabilities:

$$P(p_i = 0) = rac{4}{7}, \ P(p_i = 1) = rac{3}{7}, \ P(q_i = 0) = P(q_i = 1) = rac{1}{2},$$

(S4) 2n more selections to cut off possibly large part of polyhedron.

Summary

We use $3n^2 + 20n$ inequalities in total.

Numerical examples

Example (Behnke, 1989)

Consider

$$\mathbf{A} = \begin{pmatrix} 3 & [1,2] \\ [1,2] & 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} [10,10.5] \\ [10,10.5] \end{pmatrix}.$$

Results and comparisons:

our algorithm	$([1.740, 2.726], [1.740, 2.726])^T$
The interval hull of Σ_{sym}	$([1.800, 2.687], [1.810, 2.688])^T$
The interval hull of Σ	$([1.285, 3.072], [1.285, 3.072])^T$
The Rump inclusion method	$([1.623, 2.932], [1.623, 2.932])^T$
The interval Cholesky method	$([0.467, 3.125], [1.125, 4.300])^T$

Numerical examples

Example (Random symmetric systems)

Data were generated randomly as follows:

- A^c_{ij} chosen randomly and independently in [-10, 10] ,
- $A_{ii}^{\Delta} := R$ randomly in [0, R], where R > 0 is a parameter,
- symmetrize $A^c := A^c + (A^c)^T + 20nI$, $A^{\Delta} := A^{\Delta} + (A^{\Delta})^T$,
- b_i^c randomly in [-10n, 10n], b_i^{Δ} in [0, R].

Note

- Computations in MATLAB with INTLAB,
 - verifylss computes a fast interval enclosure of Σ ,
 - verintervalhull computes the verified interval hull of Σ .
- Efficiency measured by the volume that is cut off, i.e.

$$\frac{\prod_{i=1}^{n} (x_{i}^{0})^{\Delta} - \prod_{i=1}^{n} (x_{i}^{*})^{\Delta}}{\prod_{i=1}^{n} (x_{i}^{0})^{\Delta}} 100\%.$$

Numerical examples

Example (cont'd)

n	R	runs	exec. time	verifylss cut off	verintervalhull cut off
5	0.1	100	5.13 s	21.8 %	18.8 %
5	0.5	100	5.52 s	29.5 %	15.6 %
5	1	100	5.71 s	38.0 %	13.1 %
10	0.1	100	56.3 s	36.1 %	31.3 %
10	0.5	100	54.5 s	47.5 %	25.5 %
10	1	100	55.4 s	57.8 %	19.4 %
15	0.1	100	218 s	43.6 %	37.1 %
15	0.5	100	222 s	59.6 %	31.5 %
15	1	100	211 s	72.2 %	23.9 %
20	0.1	50	604 s	51.7 %	44.1 %
20	0.5	50	600 s	68.3 %	36.3 %
20	1	50	573 s	80.9 %	26.5 %
25	0.1	50	1318 s	57.7 %	49.3 %
25	0.5	50	1312 s	75.3 %	41.0 %
25	1	50	1250 s	86.9 %	30.8 %