New approach to interval linear regression

Milan Hladík ¹ Michal Černý ²

- Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
- Faculty of Computer Science and Statistics, University of Economics, Prague, Czech Republic

MEC EurOPT 2010, İzmir, Turkey June 23 – 26

Linear regression

Model

$$y_j = x_{j,1}a_1 + x_{j,2}a_2 + \cdots + x_{j,n}a_n = X_{j*}a, \quad j = 1, \dots, p,$$

or,

where $X \in \mathbb{R}^{p \times n}$ is an input matrix, and $y \in \mathbb{R}^p$ is an output vector.

Problem

Find a the best approximation to y = Xa.

Methods

- L₂-norm estimate (least squares method);
- L₁-norm estimate (least abscissae method);
- L_∞-norm estimate;
-

Interval linear regression

Model (crisp input – crisp output)

$$y_j = x_{j,1}\mathbf{a}_1 + x_{j,2}\mathbf{a}_2 + \cdots + x_{j,n}\mathbf{a}_n = X_{j*}\mathbf{a}, \quad j = 1, \dots, p,$$

or,

Xa,

where $\mathbf{a}_i = [a_i - c_i, a_i + c_i], i = 1, \dots, n$, are intervals.

Problem

Find as narrow as possible interval vector \mathbf{a} such that $y \subseteq X\mathbf{a}$, i.e.,

$$\forall j = 1, \ldots, p \ \exists a' \in \mathbf{a} : \ y_j = X_{j*}a'.$$

Interval linear regression

Applications

- Ergonomics (Chang et al., 1996);
- Market sales forecasting (Heshmaty & Kandel, 1985);
- System identification (Kaneyoshi et al., 1990);
- Speech learning systems (Liu, 2009).

Methods

- (1) Linear programming formulation (Lee & Tanaka, 1999, Tanaka, 1987, Tanaka & Watada, 1988);
- (2) Quadratic programming formulation (Tanaka & Lee, 1998);
- (3) Support vector machines (Hao, 2009, Huang & Kao, 2009).

Pros/Cons

- (1) simple, but some parameters crisp,
- (2)-(3) more complex, but small improvement.

New approach

Preliminary

Find an interval vector in the form $\mathbf{a} = [a - \delta c_{\Delta}, a + \delta c_{\Delta}]$, where

- a is an initial real-valued estimate to y = Xa;
- $c_{\Delta} \geq 0$ is given (usually $c_{\Delta} = |a|$ or $c_{\Delta} = 1$);
- $\delta \ge 0$ is a tolerance quotient in demand.

Theorem,

If there is $j \in \{1, ..., p\}$ such that $|X|_{j*}c_{\Delta} = 0$ and $y_j \neq X_{j*}a$ then there exists no allowable δ . Otherwise let

$$\delta^* := \max_{j:|X|_{j*}c_{\Delta}>0} \frac{|y_j - X_{j*}a|}{|X|_{j*}c_{\Delta}},$$

where $\max \emptyset = 0$ by definition. Then δ^* is the minimal tolerance quotient.

New approach

Properties

- Very cheap to calculate δ^* .
- The widths of interval in $\mathbf{a} = [a \delta c_{\Delta}, a + \delta c_{\Delta}]$ are proportional to c_{Δ} and minimal in some sense.
- Easy to interpret δ^* .
- δ^* can be used to measure a fitness of a to the model.
- But: δ^* highly depends on the initial estimate a.

Examples: house price model

Example (House price model, Lee & Tanaka, 1999)

$$y = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 + \mathbf{a}_4 x_4.$$

j.	У	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
1	606	1	1	38.09	36.43
2	710	1	1	62.10	26.50
3	808	1	1	63.76	44.71
4	826	1	1	74.52	38.09
5	865	1	1	75.38	41.10
6	852	1	2	52.99	26.49
7	917	1	2	62.93	26.49
8	1031	1	2	72.04	33.12
9	1092	1	2	76.12	43.06
10	1203	1	2	90.26	42.64
11	1394	1	3	85.70	31.33
12	1420	1	3	95.27	27.64
13	1601	1	3	105.98	27.64
14	1632	1	3	79.25	66.81
15	1699	1	3	120.5	32.25

 x_1 ... absolute term,

 x_2 ... quality of material,

 x_3 ... the area of the first floor (m^2) ,

 x_4 ... the area of the second floor (m^2) ,

y ... the sale price (10,000 JPY).

Examples: house price model

Example (cont.)

Solution by a linear programming-based method (Tanaka & Lee, 1998)

$$y = [0, 0] + [208, 283]x_2 + [5.85, 5.85]x_3 + [4.79, 4.79]x_4.$$

The quadratic programming-based method (Tanaka & Lee, 1998):

$$y = [-8.81, 8.81] + [209, 259]x_2 + [6.14, 6.14]x_3 + [4.41, 5.39]x_4.$$

Our method:

- $a := (X^T X)^{-1} X^T y = (-239.28, 264.84, 7.47, 6.76)^T$,
- \bullet $c_{\Delta} := |a|,$
- calculate $\delta^* = 0.0482$.

It means that all entries of a perturb within 4.82% tolerance:

$$y = [-251, -228] + [252, 278]x_2 + [7.11, 7.83]x_3 + [6.43, 7.08]x_4.$$

Examples: outliers

Example (Outliers, Ishibuchi & Tanaka, 1990)

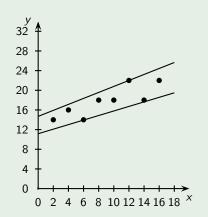


Figure: Basic interval regression model without outliers.

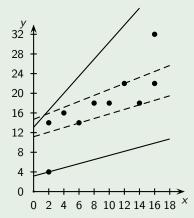


Figure: Basic interval regression model with outliers.

Examples: outliers

Example (Outliers, Ishibuchi & Tanaka, 1990)

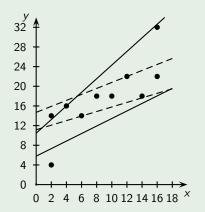


Figure: Improved interval regression model; *a* is obtained by least squares.

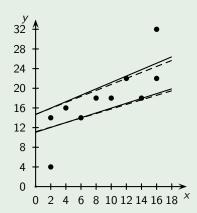


Figure: Improved interval regression model; a is obtained by L_1 regression.

Examples: risk management

Example (Price development of oil and kerosene)

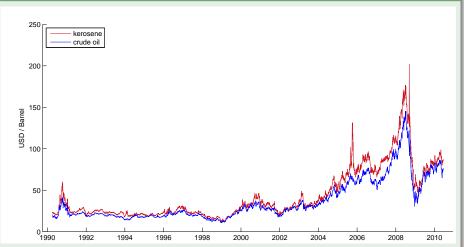


Figure: Evolution of prices of kerosene and crude oil (WTI) in dollars per barrel.

Examples: risk management

Example (cont.)

- An airline company may hedge expected future purchases of kerosene by crude oil futures.
- A proper hedge ratio must be determined to decrease the market risk.

Assume that price of kerosene y is a linear function of the price of oil x:

$$y=a_1+a_2x,$$

A least square estimate of a is $a = (-1.319, 1.225)^T$ and the model reads

$$y = -1.319 + 1.225x.$$

- Put $c_{\Delta} := |a|$ and calculate $\delta^* = 0.7204$.
- Hence the hedge ratio a_2 is quite unstable;
- Removing 10 of the worst outliers we decrease δ^* to 0.5053;
- Removing 100 of the worst outliers we decrease δ^* to 0.1758.

Conclusion and future work

Conclusion

- The proposed method is more flexible;
- The widths of the resulting interval parameters are constructed proportionally;
- The tolerance quotient is easily interpreted by a user;
- It can used as a fitness measure of the model;
- Outliers are easy to detect and handle.

Future work

- Theoretical properties of the quotient as a fitness measure.
- Extension of the method to crisp input interval output models.
- Extension of the method to interval input interval output models.