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Introduction

Bimatrix game

Bimatrix game is (A,B) with positive matrices A,B ∈ Rm×n;

Mixed strategy for player I: x ∈ Rm, x ≥ 0, eT x = 1;

Mixed strategy for player II: y ∈ Rn, y ≥ 0, eT y = 1;

Expected reward for player I: xTAy ;

Expected reward for player II: xTBy ;

(x̂ , ŷ) is a (Nash) equilibrium if

x̂TAŷ ≥ xTAŷ ,

x̂TBŷ ≥ x̂TBy

for any mixed strategy x and y ;

Every bimatrix game has an equilibrium.
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Introduction

Theorem (Audet et al., 2006)

Let

L1 := max
i ,j

aij −min
i ,j

aij ,

L2 := max
i ,j

bij −min
i ,j

bij .

The set of equilibria is the set of mixed strategies (x , y) for which there
are α, β ∈ R and vectors u ∈ {0, 1}m and v ∈ {0, 1}n satisfying

eT x = 1, x ≥ 0,

eT y = 1, y ≥ 0,

αe − L1u ≤ Ay ≤ αe,

βe − L2v ≤ BT x ≤ βe,

x + u ≤ e, y + v ≤ e.
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Introduction

Definition

An interval matrix

A := [A,A] = {A ∈ Rn×n | A ≤ A ≤ A};

An interval bimatrix game is (A,B);

An instance of (A,B) is any (A,B) with A ∈ A and B ∈ B.

Example

A =

(
5 0

[4, 6] 1

)
, B =

(
5 [4, 6]
0 1

)
.

(A,B) has three equilibria (e1, e1), (e2, e2) and ((1
2 , 1

2), (1
2 , 1

2)) with
rewards respectively 5, 1 and 5

2 for both players.

(A,B) has one equilibrium (e2, e2) and both players earn 1.
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Strong equilibria

Definition

Strong equilibrium is an equilibrium common for all instances.

Theorem (Strong equilibrium in pure strategies)

There exists a strong equilibrium in pure strategies if and only if there is
some i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} such that

aij ≥ akj ∀k = 1, . . . ,m, k 6= i ,

bij ≥ bik ∀k = 1, . . . , n, k 6= j .

In this case, (e i , e j) is a strong equilibrium.
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Strong equilibria

Definition

L1 := max
i ,j

aij −min
i ,j

aij ,

L2 := max
i ,j

bij −min
i ,j

bij .

Theorem (Strong equilibrium in non-pure strategies)

A pair of mixed non-pure strategies (x̂ , ŷ) is a strong equilibrium iff there
are α̂, β̂ ∈ R, û ∈ {0, 1}m and v̂ ∈ {0, 1}n solving

eT x = 1, x ≥ 0,

eT y = 1, y ≥ 0,

αe − L1u ≤ Ay , Ay ≤ αe,

βe − L2v ≤ BT x , B
T

x ≤ βe,

x + u ≤ e, y + v ≤ e.
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Strong equilibria

Theorem (Strong equilibrium in pure and non-pure strategy)

A pair (x̂ , ŷ) is a strong equilibrium consisting of pure strategy x̂ and a
non-pure strategy ŷ iff there are α̂, β̂ ∈ R, û ∈ {0, 1}m and v̂ ∈ {0, 1}n

solving the mixed integer linear system

eT x = 1, x ≥ 0,

eT y = 1, y ≥ 0,

αe − L1u ≤ Ay , Ay ≤ αe + L1(e − u),

eTu = m − 1,

βe − L2v ≤ BT x , B
T

x ≤ βe,

x + u ≤ e,

y + v ≤ e.
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Strong equilibria

Theorem (Strong equilibrium)

A pair (x̂ , ŷ) is a strong equilibrium iff there are α̂, β̂ ∈ R, γ̂, δ̂ ∈ {0, 1},
û ∈ {0, 1}m and v̂ ∈ {0, 1}n solving

eT x = 1, x ≥ 0,

eT y = 1, y ≥ 0,

αe − L1u ≤ Ay , Ay ≤ αe + L1(e − u),

Ay ≤ αe + L1γe,

(m − 1)γ ≤ eTu,

βe − L2v ≤ BT x , B
T

x ≤ βe + L2(e − v),

B
T

x ≤ βe + L2δe,

(n − 1)δ ≤ eT v ,

x + u ≤ e, y + v ≤ e.
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Strong equilibria

Example

Consider an interval bimatrix game (A,B) with

A =

 42 [21, 24] 21
[49, 52] [35, 38] [14, 17]

7 [77, 80] 35

 , B = AT .

In pure strategies, there is a unique strong equilibrium (x , y) with
x = y = (0, 0, 1)T . Players’ rewards are 35.
The corresponding solution to the system consists of x , y ,
u = v = (1, 1, 0)T , γ = δ = 1 and any α, β ∈ [21, 35].

In non-pure strategies, there is a unique strong equilibrium (x , y) with
x = y = (0.2857, 0, 0.7143)T and players’ rewards α = β = 27.
That is, x , y , α, β, u = v = (0, 1, 0)T and γ = δ = 0 form a solution
the system.
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Equilibria set

Theorem

The set of all equilibria for all bimatrix games (A,B) with A ∈ A and
B ∈ B is described by the mixed integer linear system

eT x = 1, x ≥ 0,

eT y = 1, y ≥ 0,

αe − L1u ≤ Ay , Ay ≤ αe,

βe − L2v ≤ B
T

x , BT x ≤ βe,

x + u ≤ e, u ∈ {0, 1}m,

y + v ≤ e, v ∈ {0, 1}n.

Consequences

Checking if (x , y) is an equilibrium is easy;

The equilibria set forms a union of finitely many convex polyhedra;

Computable the range of possible rewards.
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Equilibria set

Example

Recall an interval bimatrix game (A,B) with

A =

 42 [21, 24] 21
[49, 52] [35, 38] [14, 17]

7 [77, 80] 35

 , B = AT .

1 Let u = v = (0, 0, 0)T . The polyhedron X corresponding to variables
x and β has vertices

(x1, β1) = (0.2857, 0, 0.7143, 27.0000),

(x2, β2) = (0.3714, 0.1000, 0.5286, 29.1000),

(x3, β3) = (0.3671, 0.0886, 0.5443, 28.7089),

(x4, β4) = (0.3676, 0.1029, 0.5294, 29.0294),

(x5, β5) = (0.3636, 0.0909, 0.5455, 28.6364).

The polyhedron Y corresponding to y and α equals X .
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Equilibria set

Example (cont.)

2 For u = (0, 0, 0)T and v = (0, 1, 0)T we calculate the set of equilibria
X × {(0.2857, 0, 0.7143, 27.0000)}. It is a subset of X × X .

3 Situation u = (0, 1, 0)T and v = (0, 0, 0)T is symmetric to the
previous one.

4 For u = (0, 1, 0)T and v = (0, 1, 0)T we obtain the set of equilibria

{(0.2857, 0, 0.7143, 27.0000)} × {(0.2857, 0, 0.7143, 27.0000)}.

Also this case is covered by the first one.

5 For u = (1, 1, 0)T and v = (1, 1, 0)T we get only one equilibrium
(e3, e3). The reward is 35 for both players.

The equilibria set is (X × X ) ∪ {(0, 0, 1, 35, 0, 0, 1, 35)}.

M. Hlad́ık (CUNI) Interval bimatrix games June 15–18, 2009 12 / 12


