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Introduction

Bimatrix game

Bimatrix game is (A,B) with positive matrices A,B ∈ Rm×n;

Mixed strategy for player I: x ∈ Rm, x ≥ 0, eT x = 1;

Mixed strategy for player II: y ∈ Rn, y ≥ 0, eT y = 1;

Expected reward for player I: xTAy ;

Expected reward for player II: xTBy ;

(x̂ , ŷ) is a (Nash) equilibrium if

x̂TAŷ ≥ xTAŷ ,

x̂TBŷ ≥ x̂TBy

for any mixed strategy x and y ;

Every bimatrix game has an equilibrium.
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Introduction

Theorem (Audet et al., 2006)

Let

L1 := max
i ,j

aij −min
i ,j

aij ,

L2 := max
i ,j

bij −min
i ,j

bij .

The set of equilibria is the set of mixed strategies (x , y) for which there
are α, β ∈ R and vectors u ∈ {0, 1}m and v ∈ {0, 1}n satisfying

eT x = 1, x ≥ 0,

eT y = 1, y ≥ 0,

αe − L1u ≤ Ay ≤ αe,

βe − L2v ≤ BT x ≤ βe,

x + u ≤ e, y + v ≤ e.
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Introduction

Definition

An interval matrix A := [A,A] = {A ∈ Rn×n | A ≤ A ≤ A};
The midpoint of A is Ac := 1

2(A + A);

The radius of A is Ac := 1
2(A− A);

An interval bimatrix game is (A,B);

An instance of (A,B) is any (A,B) with A ∈ A and B ∈ B.

Example

A =

(
5 0

[4, 6] 1

)
, B =

(
5 [4, 6]
0 1

)
.

(A,B) has three equilibria (e1, e1), (e2, e2) and ((1
2 , 1

2), (1
2 , 1

2)) with
rewards respectively 5, 1 and 5

2 for both players.

(A,B) has one equilibrium (e2, e2) and both players earn 1.
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Interval games

Cooperation under interval uncertainty:

Alparslan-Gök et al., 2008

Zero-sum interval matrix games:

Levin, 1999
Shashikhin, 2004
Collins & Hu, 2005, 2008
Liu & Kao, 2008

Interval bimatrix games:

Hlad́ık, 2009
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Support set invariancy

Definition

Support of a vector x is σ(x) := {i | xi 6= 0}.

Support set invariancies

For an interval game (A,B) and index sets S1 ⊆ {1, . . . ,m} and
S2 ⊆ {1, . . . , n} introduce

(SSI1) Every instance (A,B), A ∈ A and B ∈ B has an equilibrium (x , y)
such that σ(x) = S1 and σ(y) = S2.

(SSI2) Every instance (A,B), A ∈ A and B ∈ B has an equilibrium (x , y)
such that σ(x) ⊆ S1 and σ(y) ⊆ S2.

(SSI3) Every instance (A,B), A ∈ A and B ∈ B has an equilibrium (x , y)
such that σ(x) ⊇ S1 and σ(y) ⊇ S2.

M. Hlad́ık (CUNI) Interval bimatrix games July 3–4, 2009 6 / 12



The first kind of support set invariancy

Theorem

Let S1 ⊆ {1, . . . ,m} and S2 ⊆ {1, . . . , n}. Remove from A the columns
indexed by {1, . . . , n} \ S2 and from B the rows indexed by
{1, . . . ,m} \ S1. Then (SSI1) holds true iff for every z1 ∈ {±1}|S1| there
exist y ∈ R|S2| and α ∈ R satisfying

eT y = 1, y ≥ ε2e,

α = (Ac
i ,· − z1

i A∆
i ,·)y , ∀i ∈ S1,

α ≥ (Ai ,·)y , ∀i 6∈ S1,

and for every z2 ∈ {±1}|S2| there exist x ∈ R|S1| and β ∈ R satisfying

eT x = 1, x ≥ ε1e,

β = (Bc·,i − z2
i B∆·,i )T x , ∀i ∈ S2,

β ≥ (B·,i )T x , ∀i 6∈ S2,

where ε1 > 0 and ε2 > 0 are sufficiently small.
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The second kind of support set invariancy

Theorem (sufficient condition)

Let S1 ⊆ {1, . . . ,m} and S2 ⊆ {1, . . . , n}. Remove from A the columns
indexed by {1, . . . , n} \S2 and from B the rows indexed by {1, . . . ,m} \S1.
Then (SSI2) holds true if for every k ∈ {1, . . . ,m} \ S1 the linear system∑

i∈S1

λiAi ,· ≥ Ak,·,∑
i∈S1

λi = 1, λi ≥ 0 ∀i ∈ S1

is solvable, and for every k ∈ {1, . . . , n} \ S2 there is a solution to∑
i∈S2

λiB·,i ≥ B·,k ,

∑
i∈S2

λi = 1, λi ≥ 0 ∀i ∈ S2.
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The second kind of support set invariancy

Theorem (sufficient condition)

Let S1 ⊆ {1, . . . ,m} and S2 ⊆ {1, . . . , n}. Remove from A the columns
indexed by {1, . . . ,m} \ S2 and from B the rows indexed by
{1, . . . , n} \ S1. Then (SSI2) holds true if for every z1 ∈ {±1}|S1| there are
y ∈ R|S2| and α ∈ R satisfying the linear system

eT y = 1, y ≥ 0,

α = (Ac
i ,· − z1

i A∆
i ,·)y , ∀i ∈ S1,

α ≥ (Ai ,·)y , ∀i 6∈ S1,

and for every z2 ∈ {±1}|S2| there are x ∈ R|S1| and β ∈ R satisfying

eT x = 1, x ≥ 0,

β = (Bc·,i − z2
i B∆·,i )T x , ∀i ∈ S2,

β ≥ (B·,i )T x , ∀i 6∈ S2.
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The third kind of support set invariancy

Theorem (necessary condition)

Let S1 ⊆ {1, . . . ,m} and S2 ⊆ {1, . . . , n}. If (SSI3) holds true then for
every z1 ∈ {±1}m there exist y ∈ Rn and α ∈ R satisfying

eT y = 1,

yi ≥ ε2, ∀i ∈ S2,

α = (Ac
i ,· − z1

i A∆
i ,·)y , ∀i ∈ S1,

α ≥ (Ai ,·)y , ∀i 6∈ S1,

for every z2 ∈ {±1}n there exist x ∈ Rm and β ∈ R satisfying

eT x = 1,

xi ≥ ε1, ∀i ∈ S1,

β = (Bc·,i − z2
i B∆·,i )T x , ∀i ∈ S2,

β ≥ (B·,i )T x , ∀i 6∈ S2,

where ε1 > 0 and ε2 > 0 are sufficiently small.
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Support set invariancy – an example

Example

Consider an interval bimatrix game (A,B) with

A :=


0 25 5 5
40 0 5 10
10 15 20 0
20 5 10 15

, A :=


5 28 8 8
43 5 8 13
13 18 25 3
23 8 13 20

 ,

B := AT , B := A
T

.

The bimatrix game (A,B) has equilibria

1 (x1, y1), x1 = y2 = (1
3 , 8

15 , 2
15 , 0)T ,

2 (x2, y2), x2 = y2 = (0, 0, 1, 0)T ,

3 (x3, y3), x3 = y3 = (1
5 , 2

5 , 0, 2
5)T ,

among others.
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Support set invariancy – an example

Example (cont.)

1 Put S1 := {1, 2, 3} and S2 := {1, 2, 3}.
(SSI1) doesn’t hold;
(SSI2) one of sufficient conditions holds;
(SSI3) necessary condition doesn’t hold.

2 Put S1 := {3} and S2 := {3}.
(SSI1) holds;
(SSI2) sufficient conditions hold;
(SSI3) necessary condition holds.

3 Put S1 := {1, 2, 4} and S2 := {1, 2, 4}.
(SSI1) doesn’t hold;
(SSI2) no sufficient condition holds;
(SSI3) necessary condition doesn’t hold.
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