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Introduction

Generalized linear fractional programming problem (GLFP)
o Let A,BcR™", CcR™ and c € R. Then (GLFP) is

f(A,B,C,c):=inf X\ subjectto Ax < ABx, Cx <c¢, x>0,
or,

Aj .
f(A B, C,c) :=inf ( max X> subject to Cx < ¢, x> 0.

i=1,....m bjX

@ Assume that Bx > 0 holds for all x satisfying Cx < ¢, x > 0.

@ Solvable in polynomial time using an interior point method.

v

Interval problem
@ An interval matrix A :=[A,A] = {Ac R™" | A< A< A}
Analogously B, C and c.
o Interval problem: (GLFP) with A€ A, BeB, CcCandce€c.

v
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Introduction

(A1) For every Be B, C € C and ¢ € c any solution to Cx > ¢, x >0
solves also Bx > 0.

(A1) is true iff Bx > 0 holds for all x satisfying Cx <€, x > 0.

Definition (Bounds on optimal value)

Lower and upper bound on the optimal value is respectively defined as

=inf f(A,B,C,c) subjectto A€ A, BeB, CcC, cec,

f:
f:=sup f(A B,C,c) subjectto AcA, Be€B, CcC, ccc.
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Range of optimal values

Q@ (Lower bound) Let

fi :=inf \ subject to Ax < ABx, A<0, Cx<¢, x>0
If i <0 then f = f1, otherwise f = f> with
f» :=inf A\ subject to Ax < ABx, A>0, Cx<¢, x>0

@ (Upper bound) Let
fz :=inf X\ subject to Ax < ABx, >0, Cx<c¢, x>0.

If 5 > 0 then f = f3, otherwise f = f; with

fs :=inf X\ subject to Ax < ABx, A<0, Cx<c, x>0.

v
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Tolerances of variations

@ Given (GLFP)
f(A,B,C,c):=inf X\ subjectto Ax < ABx, Cx < ¢, x>0,

with A:= A°, B:= B0 C:= (O c:= 0.

@ Given bounds of the optimal value function f and f,
f<f(A% B C0 c0) < ¥

o Compute maximal tolerances on inputs such that optimal values
range in [f, f].

Tolerance rates

Given non-negative A2, B& ¢ R™*" CA € R’*" and ¢® € R/. Denote

As = [A° — AR A® 1 6AR], Bs:=[B° - B2, B + B4,
Cs:=[CO—6CA,C°+6C2)], c5:=[c"—dc2, % +6ch).

4
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Tolerances of variations

Setting of tolerance rates

Put
° a,-JA- := 0 if tolerance for ag- is not in demand;
° aﬁ := 1 for the absolute tolerance;
° a? = |ag-| for the relative (percentage) tolerance.

Tolerances

@ A lower tolerance is 6; > 0 such that for all A € A5, B € By,
C €GC;, and ¢ € ¢y,

f(A,B,C,c) > f.

@ An upper tolerance is 91 > 0 such that for all A € As,, B € B,
C € C;, and ¢ € ¢y, 3
f(AB,C,c) <f.

o A (overall) tolerance 6 = min(d1, d2).

v

M. Hladik (CUNI) Interval linear fractional programming July 5-8, 2009 6 /12



Tolerances of variations

Let

0] :=sup ¢

subject to f < f(A,B,C,c) VA€ As, B € By, C € Cs, ¢ € cy,
d5 :=sup 9

subject to f > f(A,B,C,c) VA€ As, B€ B;, C € Cs, ¢ € cs,

and denote §* = min(d7,03). Assume that

(A2) (B® — §*BA)x > 0 for all solutions of (C° — 6*CA)x < ¢ + §*c5,
x > 0.

(A3) (CO+6*CP)x < ¢ — 6*c®, x > 0 is solvable.

Then 6* is the maximal admissible tolerance.
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Tolerances of variations
Example ((A2) is necessary)

Consider the problem
inf A subjectto [1 —6,1+d]x <[1—9,1+ 0] x, x > 1,

@ For § € (0,1) the optimal value ranges in [i—jrg, i%g],

@ For § = 1 the optimal value can achieve —co.

Example ((A3) is necessary)

Consider the problem

inf A st. x1+x <Axi1+x), 2 =1, [1 —0,14]x1 + x2 > 2,

@ For 0 € (0,1) the optimal value is constantly one,

@ For § = 1 the optimal value is either one or co.

v

M. Hladik (CUNI) Interval linear fractional programming July 5-8, 2009 8/12



Tolerances of variations

Theorem (Tolerances of variations)
Under assumption (A2) and (A3):
@ (Lower tolerance) If f > 0 then
6y :=inf & subject to (A° — fB%)x < §(A” + FB®)x,
C'%x— 0 < J(CAX + CA), x >0,

otherwise
61 :=inf § subject to (A° — fB%)x < §(A2 — fB®)x,
Co% — ® < §(CBx+ ), x>0.

@ (Upper tolerance) If f > 0 then

62 :=sup & subject to (—A° + FB%)x > §(A® + FBR)x,

—C% + %> 5(CAx+ cA), x >0,
otherwise

6y :=sup & subject to (—A° + FB%)x > §(AD — FB)x,
— C% + ¢ > 5(CAX—|— cA), x > 0.

v
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Tolerances of variations

@ The resulting tolerances 1 and d> are maximal in the most of cases.

e Compute 67 and J, and then check validity of assumptions (A2) and
(A3) with 0* = min(dy, 92).

Example (von Neumann economic growth model)

Consider
max A subject to AAx < Bx, x > 1,
where
@ variables x;, i = 1,...,n denote activity of sector /;

@ matrix A € R™*" consists of input coefficients;

@ matrix B € R™*" consists of output coefficients.
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Tolerances of variations

Example (cont.)
Consider data set by Li (2008):

0.28 050 053 O 0 0 1 0 00 0 O

A— 084 O 0 0 0 0.77 B— 0 1 00 1 O
0 049 045 050 048 0 |’ 0 025 1 1 025 O

0 0 0 051 057 0.29 0 0 00 0 1

The optimal value is \* = 1.049.

@ Put [f,f] :=[1, 1.2] and A2 := |A| and B2 := |B|.
Compute lower tolerance 1 = 0.024 and upper tolerance 6% = 0.067.
Entries of A and B may vary within 2.4% tolerance.

@ Put [f,f] :=[1, 1.2] and A? :=0 and B2 := |B].
Compute 6 = 0.046 and 62 = 0.143.

The resulting percentage tolerance is 4.6%.

v
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The End.
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