Generalized linear fractional programming under interval uncertainty

Milan Hladík

Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Prague

EURO 23, Bonn, Germany July 5–8

Introduction

Generalized linear fractional programming problem (GLFP)

• Let $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{l \times n}$ and $c \in \mathbb{R}^{l}$. Then (GLFP) is

 $f(A,B,C,c):= ext{inf }\lambda ext{ subject to }Ax \leq \lambda Bx, ext{ }Cx \leq c, ext{ }x \geq 0,$

or,

$$f(A, B, C, c) := \inf \left(\max_{i=1,...,m} \frac{A_i x}{B_i x} \right) \text{ subject to } Cx \leq c, \ x \geq 0.$$

- Assume that $Bx \ge 0$ holds for all x satisfying $Cx \le c$, $x \ge 0$.
- Solvable in polynomial time using an interior point method.

Interval problem

- An interval matrix $\mathbf{A} := [\underline{A}, \overline{A}] = \{A \in \mathbb{R}^{n \times n} \mid \underline{A} \le A \le \overline{A}\}.$ Analogously \mathbf{B}, \mathbf{C} and \mathbf{c} .
- Interval problem: (GLFP) with $A \in \mathbf{A}$, $B \in \mathbf{B}$, $C \in \mathbf{C}$ and $c \in \mathbf{c}$.

Assumption

(A1) For every $B \in \mathbf{B}$, $C \in \mathbf{C}$ and $c \in \mathbf{c}$ any solution to $Cx \ge c$, $x \ge 0$ solves also $Bx \ge 0$.

Theorem

(A1) is true iff $\underline{B}x \ge 0$ holds for all x satisfying $\underline{C}x \le \overline{c}$, $x \ge 0$.

Definition (Bounds on optimal value)

Lower and upper bound on the optimal value is respectively defined as

$$\underline{f} := \inf f(A, B, C, c) \text{ subject to } A \in \mathbf{A}, B \in \mathbf{B}, C \in \mathbf{C}, c \in \mathbf{c}, \\ \overline{f} := \sup f(A, B, C, c) \text{ subject to } A \in \mathbf{A}, B \in \mathbf{B}, C \in \mathbf{C}, c \in \mathbf{c}.$$

Range of optimal values

Theorem

(Lower bound) Let

 $f_1 := \inf \lambda \text{ subject to } \underline{A}x \leq \lambda \underline{B}x, \ \lambda \leq 0, \ \underline{C}x \leq \overline{c}, \ x \geq 0.$

If $f_1 < 0$ then $\underline{f} = f_1$, otherwise $\underline{f} = f_2$ with

 $f_2 := \inf \lambda \text{ subject to } \underline{A}x \leq \lambda \overline{B}x, \ \lambda \geq 0, \ \underline{C}x \leq \overline{c}, \ x \geq 0.$

Output (Upper bound) Let

 $f_3 := \inf \lambda \text{ subject to } \overline{A}x \leq \lambda \underline{B}x, \ \lambda \geq 0, \ \overline{C}x \leq \underline{c}, \ x \geq 0.$

If $f_3 > 0$ then $\overline{f} = f_3$, otherwise $\overline{f} = f_4$ with

 $f_4:= \text{inf } \lambda \ \text{ subject to } \ \overline{A}x \leq \lambda \overline{B}x, \ \lambda \leq 0, \ \overline{C}x \leq \underline{c}, \ x \geq 0.$

Aim

Given (GLFP)

 $f(A, B, C, c) := \inf \lambda$ subject to $Ax \leq \lambda Bx, Cx \leq c, x \geq 0$,

with $A := A^0$, $B := B^0$, $C := C^0$, $c := c^0$.

- Given bounds of the optimal value function \underline{f} and \overline{f} , $\underline{f} \leq f(A^0, B^0, C^0, c^0) \leq \overline{f}$.
- Compute maximal tolerances on inputs such that optimal values range in $[\underline{f}, \overline{f}]$.

Tolerance rates

Given non-negative $A^{\Delta}, B^{\Delta} \in \mathbb{R}^{m \times n}$, $C^{\Delta} \in \mathbb{R}^{l \times n}$ and $c^{\Delta} \in \mathbb{R}^{l}$. Denote

$$\begin{aligned} \mathbf{A}_{\delta} &:= [A^{0} - \delta A^{\Delta}, A^{0} + \delta A^{\Delta}], \quad \mathbf{B}_{\delta} &:= [B^{0} - \delta B^{\Delta}, B^{0} + \delta B^{\Delta}], \\ \mathbf{C}_{\delta} &:= [C^{0} - \delta C^{\Delta}, C^{0} + \delta C^{\Delta}], \quad \mathbf{c}_{\delta} &:= [c^{0} - \delta c^{\Delta}, c^{0} + \delta c^{\Delta}]. \end{aligned}$$

Tolerances of variations

Setting of tolerance rates

Put

• $a_{ij}^{\Delta} := 0$ if tolerance for a_{ij}^0 is not in demand;

•
$$a_{jj}^{\Delta} := 1$$
 for the absolute tolerance;

• $a_{ij}^{\Delta} := |a_{ij}^{0}|$ for the relative (percentage) tolerance.

Tolerances

- A lower tolerance is $\delta_1 > 0$ such that for all $A \in \mathbf{A}_{\delta_1}$, $B \in \mathbf{B}_{\delta_1}$, $C \in \mathbf{C}_{\delta_1}$ and $c \in \mathbf{c}_{\delta_1}$: f(A, B, C, c) > f.
- An upper tolerance is $\delta_1 > 0$ such that for all $A \in \mathbf{A}_{\delta_2}$, $B \in \mathbf{B}_{\delta_2}$, $C \in \mathbf{C}_{\delta_2}$ and $c \in \mathbf{c}_{\delta_2}$:

$$f(A, B, C, c) \leq \overline{f}.$$

• A (overall) tolerance $\delta = \min(\delta_1, \delta_2)$.

Tolerances of variations

Lemma

Let

 $\delta_1^* := \sup \, \delta$

subject to $\underline{f} \leq f(A, B, C, c) \ \forall A \in \mathbf{A}_{\delta}, B \in \mathbf{B}_{\delta}, C \in \mathbf{C}_{\delta}, c \in \mathbf{c}_{\delta}, \delta_{2}^{*} := \sup \delta$

subject to $\overline{f} \geq f(A, B, C, c) \ \forall A \in \mathbf{A}_{\delta}, \ B \in \mathbf{B}_{\delta}, \ C \in \mathbf{C}_{\delta}, \ c \in \mathbf{c}_{\delta},$

and denote $\delta^* = \min(\delta_1^*, \delta_2^*)$. Assume that

(A2) $(B^0 - \delta^* B^{\Delta}) x > 0$ for all solutions of $(C^0 - \delta^* C^{\Delta}) x \le c + \delta^* c^{\Delta}$, $x \ge 0$.

(A3)
$$(C^0 + \delta^* C^{\Delta}) x \leq c - \delta^* c^{\Delta}$$
, $x \geq 0$ is solvable.

Then δ^* is the maximal admissible tolerance.

Example ((A2) is necessary)

Consider the problem

 $\text{inf } \lambda \ \text{ subject to } \ [1-\delta,1+\delta]x \leq [1-\delta,1+\delta]\lambda x, \ x \geq 1,$

For δ ∈ (0, 1) the optimal value ranges in [1-δ/(1+δ), 1+δ/(1-δ)].
For δ = 1 the optimal value can achieve -∞.

Example ((A3) is necessary)

Consider the problem

$$\text{inf } \lambda \ \text{ s.t. } \ x_1+x_2 \leq \lambda(x_1+x_2), \ x_2=1, \ [1-\delta,1+\delta]x_1+x_2 \geq 2, \\$$

- For $\delta \in (0,1)$ the optimal value is constantly one,
- For $\delta = 1$ the optimal value is either one or ∞ .

Tolerances of variations

Theorem (Tolerances of variations)

Under assumption (A2) and (A3): (Lower tolerance) If $\underline{f} \ge 0$ then

otherwise

$$\delta_1 := \inf \delta \text{ subject to } (A^0 - \underline{f}B^0)x \le \delta(A^\Delta - \underline{f}B^\Delta)x,$$

 $C^0x - c^0 \le \delta(C^\Delta x + c^\Delta), \ x \ge 0.$

2 (Upper tolerance) If $\overline{f} \ge 0$ then

$$\delta_2 := \sup \delta \text{ subject to } (-A^0 + \overline{f}B^0)x \ge \delta(A^{\Delta} + \overline{f}B^{\Delta})x,$$

 $-C^0x + c^0 \ge \delta(C^{\Delta}x + c^{\Delta}), \ x \ge 0,$

otherwise

$$\begin{split} \delta_2 &:= \sup \ \delta \ \text{ subject to } \ (-A^0 + \overline{f}B^0)x \geq \delta(A^\Delta - \overline{f}B^\Delta)x, \\ &- C^0x + c^0 \geq \delta(C^\Delta x + c^\Delta), \ x \geq 0. \end{split}$$

Remark

- The resulting tolerances δ_1 and δ_2 are maximal in the most of cases.
- Compute δ_1 and δ_2 and then check validity of assumptions (A2) and (A3) with $\delta^* = \min(\delta_1, \delta_2)$.

Example (von Neumann economic growth model)

Consider

$$\max \ \lambda \ \text{ subject to } \ \lambda Ax \leq Bx, \ x \geq 1,$$

where

- variables x_i , i = 1, ..., n denote activity of sector i;
- matrix $A \in \mathbb{R}^{m \times n}$ consists of input coefficients;
- matrix $B \in \mathbb{R}^{m \times n}$ consists of output coefficients.

Example (cont.)

Consider data set by Li (2008):

$$A = \begin{pmatrix} 0.28 & 0.50 & 0.53 & 0 & 0 & 0 \\ 0.84 & 0 & 0 & 0 & 0 & 0.77 \\ 0 & 0.49 & 0.45 & 0.50 & 0.48 & 0 \\ 0 & 0 & 0 & 0.51 & 0.57 & 0.29 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0.25 & 1 & 1 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

The optimal value is $\lambda^* = 1.049$.

Put [<u>f</u>, <u>f</u>] := [1, 1.2] and A^Δ := |A| and B^Δ := |B|.
 Compute lower tolerance δ¹ = 0.024 and upper tolerance δ² = 0.067.
 Entries of A and B may vary within 2.4% tolerance.

• Put
$$[\underline{f}, \overline{f}] := [1, 1.2]$$
 and $A^{\Delta} := 0$ and $B^{\Delta} := |B|$.
Compute $\delta^1 = 0.046$ and $\delta^2 = 0.143$.

The resulting percentage tolerance is 4.6%.

The End.