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Introduction

Generalized linear fractional programming problem (GLFP)

Let A,B ∈ Rm×n, C ∈ Rl×n and c ∈ Rl . Then (GLFP) is

f (A,B,C , c) := inf λ subject to Ax ≤ λBx , Cx ≤ c , x ≥ 0,

or,

f (A,B,C , c) := inf

(
max

i=1,...,m

Aix

Bix

)
subject to Cx ≤ c , x ≥ 0.

Assume that Bx ≥ 0 holds for all x satisfying Cx ≤ c , x ≥ 0.

Solvable in polynomial time using an interior point method.

Interval problem

An interval matrix A := [A,A] = {A ∈ Rn×n | A ≤ A ≤ A}.
Analogously B, C and c.

Interval problem: (GLFP) with A ∈ A, B ∈ B, C ∈ C and c ∈ c.
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Introduction

Assumption

(A1) For every B ∈ B, C ∈ C and c ∈ c any solution to Cx ≥ c , x ≥ 0
solves also Bx ≥ 0.

Theorem

(A1) is true iff Bx ≥ 0 holds for all x satisfying Cx ≤ c, x ≥ 0.

Definition (Bounds on optimal value)

Lower and upper bound on the optimal value is respectively defined as

f := inf f (A,B,C , c) subject to A ∈ A, B ∈ B, C ∈ C, c ∈ c,

f := sup f (A,B,C , c) subject to A ∈ A, B ∈ B, C ∈ C, c ∈ c.
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Range of optimal values

Theorem

1 (Lower bound) Let

f1 := inf λ subject to Ax ≤ λBx , λ ≤ 0, Cx ≤ c , x ≥ 0.

If f1 < 0 then f = f1, otherwise f = f2 with

f2 := inf λ subject to Ax ≤ λBx , λ ≥ 0, Cx ≤ c , x ≥ 0.

2 (Upper bound) Let

f3 := inf λ subject to Ax ≤ λBx , λ ≥ 0, Cx ≤ c , x ≥ 0.

If f3 > 0 then f = f3, otherwise f = f4 with

f4 := inf λ subject to Ax ≤ λBx , λ ≤ 0, Cx ≤ c , x ≥ 0.
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Tolerances of variations

Aim

Given (GLFP)

f (A,B,C , c) := inf λ subject to Ax ≤ λBx , Cx ≤ c , x ≥ 0,

with A := A0, B := B0, C := C 0, c := c0.

Given bounds of the optimal value function f and f ,
f ≤ f (A0,B0,C 0, c0) ≤ f .

Compute maximal tolerances on inputs such that optimal values
range in [f , f ].

Tolerance rates

Given non-negative A∆,B∆ ∈ Rm×n, C∆ ∈ Rl×n and c∆ ∈ Rl . Denote

Aδ := [A0 − δA∆,A0 + δA∆], Bδ := [B0 − δB∆,B0 + δB∆],

Cδ := [C 0 − δC∆,C 0 + δC∆], cδ := [c0 − δc∆, c0 + δc∆].
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Tolerances of variations

Setting of tolerance rates

Put

a∆
ij := 0 if tolerance for a0

ij is not in demand;

a∆
ij := 1 for the absolute tolerance;

a∆
ij := |a0

ij | for the relative (percentage) tolerance.

Tolerances

A lower tolerance is δ1 > 0 such that for all A ∈ Aδ1 , B ∈ Bδ1 ,
C ∈ Cδ1 and c ∈ cδ1 :

f (A,B,C , c) ≥ f .

An upper tolerance is δ1 > 0 such that for all A ∈ Aδ2 , B ∈ Bδ2 ,
C ∈ Cδ2 and c ∈ cδ2 :

f (A,B,C , c) ≤ f .

A (overall) tolerance δ = min(δ1, δ2).
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Tolerances of variations

Lemma

Let

δ∗1 := sup δ

subject to f ≤ f (A,B,C , c) ∀A ∈ Aδ, B ∈ Bδ, C ∈ Cδ, c ∈ cδ,

δ∗2 := sup δ

subject to f ≥ f (A,B,C , c) ∀A ∈ Aδ, B ∈ Bδ, C ∈ Cδ, c ∈ cδ,

and denote δ∗ = min(δ∗1 , δ
∗
2). Assume that

(A2) (B0 − δ∗B∆)x > 0 for all solutions of (C 0 − δ∗C∆)x ≤ c + δ∗c∆,
x ≥ 0.

(A3) (C 0 + δ∗C∆)x ≤ c − δ∗c∆, x ≥ 0 is solvable.

Then δ∗ is the maximal admissible tolerance.
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Tolerances of variations

Example ((A2) is necessary)

Consider the problem

inf λ subject to [1− δ, 1 + δ]x ≤ [1− δ, 1 + δ]λx , x ≥ 1,

For δ ∈ (0, 1) the optimal value ranges in [1−δ
1+δ , 1+δ

1−δ ],

For δ = 1 the optimal value can achieve −∞.

Example ((A3) is necessary)

Consider the problem

inf λ s.t. x1 + x2 ≤ λ(x1 + x2), x2 = 1, [1− δ, 1 + δ]x1 + x2 ≥ 2,

For δ ∈ (0, 1) the optimal value is constantly one,

For δ = 1 the optimal value is either one or ∞.

M. Hlad́ık (CUNI) Interval linear fractional programming July 5–8, 2009 8 / 12



Tolerances of variations

Theorem (Tolerances of variations)

Under assumption (A2) and (A3):
1 (Lower tolerance) If f ≥ 0 then

δ1 := inf δ subject to (A0 − f B0)x ≤ δ(A∆ + f B∆)x ,

C 0x − c0 ≤ δ(C∆x + c∆), x ≥ 0,

otherwise

δ1 := inf δ subject to (A0 − f B0)x ≤ δ(A∆ − f B∆)x ,

C 0x − c0 ≤ δ(C∆x + c∆), x ≥ 0.

2 (Upper tolerance) If f ≥ 0 then

δ2 := sup δ subject to (−A0 + f B0)x ≥ δ(A∆ + f B∆)x ,

− C 0x + c0 ≥ δ(C∆x + c∆), x ≥ 0,

otherwise

δ2 := sup δ subject to (−A0 + f B0)x ≥ δ(A∆ − f B∆)x ,

− C 0x + c0 ≥ δ(C∆x + c∆), x ≥ 0.
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Tolerances of variations

Remark

The resulting tolerances δ1 and δ2 are maximal in the most of cases.

Compute δ1 and δ2 and then check validity of assumptions (A2) and
(A3) with δ∗ = min(δ1, δ2).

Example (von Neumann economic growth model)

Consider

max λ subject to λAx ≤ Bx , x ≥ 1,

where

variables xi , i = 1, . . . , n denote activity of sector i ;

matrix A ∈ Rm×n consists of input coefficients;

matrix B ∈ Rm×n consists of output coefficients.
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Tolerances of variations

Example (cont.)

Consider data set by Li (2008):

A =


0.28 0.50 0.53 0 0 0
0.84 0 0 0 0 0.77
0 0.49 0.45 0.50 0.48 0
0 0 0 0.51 0.57 0.29

, B =


1 0 0 0 0 0
0 1 0 0 1 0
0 0.25 1 1 0.25 0
0 0 0 0 0 1

.

The optimal value is λ∗ = 1.049.

1 Put [f , f ] := [1, 1.2] and A∆ := |A| and B∆ := |B|.
Compute lower tolerance δ1 = 0.024 and upper tolerance δ2 = 0.067.

Entries of A and B may vary within 2.4% tolerance.

2 Put [f , f ] := [1, 1.2] and A∆ := 0 and B∆ := |B|.
Compute δ1 = 0.046 and δ2 = 0.143.

The resulting percentage tolerance is 4.6%.
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The End.

M. Hlad́ık (CUNI) Interval linear fractional programming July 5–8, 2009 12 / 12


