Tolerance analysis in linear programming

Milan Hladík

Department of Applied Mathematics Charles University, Prague

VOCAL 2008, Veszprém, Hungary December 15–17

Given

- ▶ An inequality system $Dx \le d$.
- ▶ An interior point $x^* \in \mathbb{R}^n$.

Given

- ▶ An inequality system $Dx \le d$.
- ▶ An interior point $x^* \in \mathbb{R}^n$.

Aim

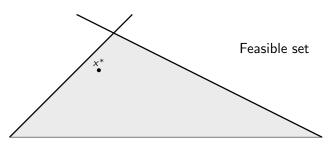
▶ Compute ranges $x^+, x^- \in \mathbb{R}^n$ such that $x^- \le x^* \le x^+$ and $Dx \le d$ is fulfilled for every x with $x^- \le x \le x^+$.

Given

- ▶ An inequality system $Dx \le d$.
- ▶ An interior point $x^* \in \mathbb{R}^n$.

Aim

▶ Compute ranges $x^+, x^- \in \mathbb{R}^n$ such that $x^- \le x^* \le x^+$ and $Dx \le d$ is fulfilled for every x with $x^- \le x \le x^+$.

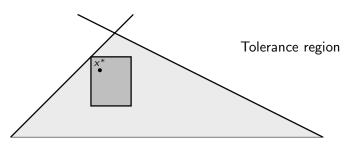


Given

- ▶ An inequality system $Dx \le d$.
- ▶ An interior point $x^* \in \mathbb{R}^n$.

Aim

▶ Compute ranges $x^+, x^- \in \mathbb{R}^n$ such that $x^- \le x^* \le x^+$ and $Dx \le d$ is fulfilled for every x with $x^- \le x \le x^+$.



Wendell's symmetric tolerances

Definition

Let $x^{\Delta} \in \mathbb{R}^n_+$. Then δ^* is symmetric tolerance if $Dx \leq d$ holds for every x such that $|x_j - x_j^*| \leq \delta^* x_j^{\Delta}$, $j = 1, \ldots, n$.

Wendell's symmetric tolerances

Definition

Let $x^{\Delta} \in \mathbb{R}^n_+$. Then δ^* is symmetric tolerance if $Dx \leq d$ holds for every x such that $|x_j - x_i^*| \leq \delta^* x_i^{\Delta}$, $j = 1, \ldots, n$.

Theorem (Wendell, 1984)

We have

$$\delta^* = \inf_{i=1,\dots,m; |D_i\cdot|x^{\Delta}>0} \frac{d_i - D_i\cdot x^*}{|D_i\cdot|x^{\Delta}}.$$

Wendell's symmetric tolerances

Definition

Let $x^{\Delta} \in \mathbb{R}^n_+$. Then δ^* is symmetric tolerance if $Dx \leq d$ holds for every x such that $|x_j - x_j^*| \leq \delta^* x_j^{\Delta}$, $j = 1, \ldots, n$.

Theorem (Wendell, 1984)

We have

$$\delta^* = \inf_{i=1,\dots,m; |D_i\cdot|x^{\Delta}>0} \frac{d_i - D_i\cdot x^*}{|D_i\cdot|x^{\Delta}}.$$

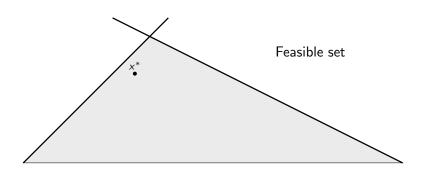
Properties

- Easy to compute and interpret
- Maximal symmetric tolerance
- ▶ But: small and loss of information

Consider the inequality system

$$-x_1 + x_2 \le 2,$$

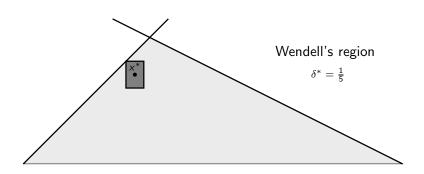
$$x_1 + 2x_2 \le 12,$$



Consider the inequality system

$$-x_1 + x_2 \le 2,$$

$$x_1 + 2x_2 \le 12,$$



Wondolowski's individual tolerances

Definition

Let $x^{\Delta} \in \mathbb{R}^n_+$. Then $\delta^-, \delta^+ \in \mathbb{R}^n_+$ are tolerances if $Dx \leq d$ holds for every for very x such that $x_j^* - \delta_j^- x_j^{\Delta} \leq x_j \leq x_j^* + \delta_j^+ x_j^{\Delta}$, $j = 1, \ldots, n$.

Wondolowski's individual tolerances

Definition

Let $x^{\Delta} \in \mathbb{R}^n_+$. Then $\delta^-, \delta^+ \in \mathbb{R}^n_+$ are tolerances if $Dx \leq d$ holds for every for very x such that $x_j^* - \delta_j^- x_j^{\Delta} \leq x_j \leq x_j^* + \delta_j^+ x_j^{\Delta}$, $j = 1, \ldots, n$.

Theorem (Wondolowski, 1991)

We have

$$\delta_{j}^{+} = \inf_{i=1,...,m; |D_{i}.|x^{\Delta}>0, d_{ij}>0} \frac{d_{i} - D_{i}.x^{*}}{|D_{i}.|x^{\Delta}},$$

$$\delta_{j}^{-} = \inf_{i=1,...,m; |D_{i}.|x^{\Delta}>0, d_{ij}<0} \frac{d_{i} - D_{i}.x^{*}}{|D_{i}.|x^{\Delta}}.$$

Wondolowski's individual tolerances

Definition

Let $x^{\Delta} \in \mathbb{R}^n_+$. Then $\delta^-, \delta^+ \in \mathbb{R}^n_+$ are tolerances if $Dx \leq d$ holds for every for very x such that $x_j^* - \delta_j^- x_j^{\Delta} \leq x_j \leq x_j^* + \delta_j^+ x_j^{\Delta}$, $j = 1, \ldots, n$.

Theorem (Wondolowski, 1991)

We have

$$\delta_{j}^{+} = \inf_{i=1,...,m; |D_{i}.|x^{\Delta}>0, d_{ij}>0} \frac{d_{i} - D_{i}.x^{*}}{|D_{i}.|x^{\Delta}},$$

$$\delta_{j}^{-} = \inf_{i=1,...,m; |D_{i}.|x^{\Delta}>0, d_{ij}<0} \frac{d_{i} - D_{i}.x^{*}}{|D_{i}.|x^{\Delta}}.$$

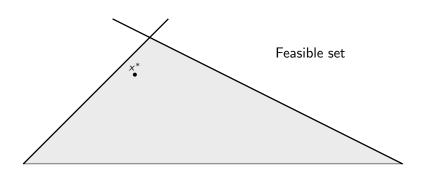
Properties

- Easy to compute and interpret
- Not maximal

Consider the inequality system

$$-x_1 + x_2 \le 2,$$

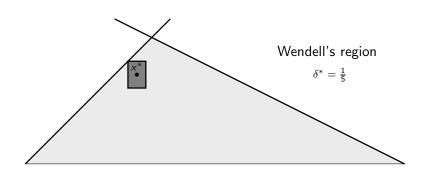
$$x_1 + 2x_2 \le 12,$$



Consider the inequality system

$$-x_1 + x_2 \le 2,$$

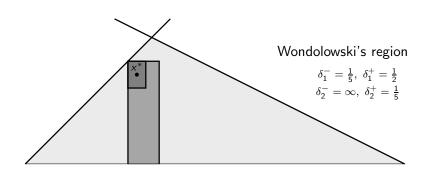
$$x_1 + 2x_2 \le 12,$$



Consider the inequality system

$$-x_1 + x_2 \le 2,$$

$$x_1 + 2x_2 \le 12,$$



Optimal individual tolerances

Basic idea

► Repeat Wondolowski's method until all inequalities are fill up

Properties

- Number of iterations at most min(m, 2n)
- Tolerances are maximal and proportionally determined

Optimal individual tolerances - an algorithm

- 1. $I := \{1, \ldots, m\}, \ \alpha_j^+ := 1, \ \alpha_j^- := 1 \ \forall j = 1, \ldots, n;$
- 2. while $I \neq \emptyset$ and $\exists j : (\alpha_i^+ = 1 \text{ or } \alpha_i^- = 1)$ do

3.
$$R_i := d_i - D_i \cdot x^* - \sum_{j; d_{ij} > 0, \alpha_j^+ = 0} d_{ik} x_j^{\Delta} \delta_j^+ + \sum_{j; d_{ij} < 0, \alpha_j^+ = 0} d_{ik} x_j^{\Delta} \delta_j^-, \ \forall i \in I;$$

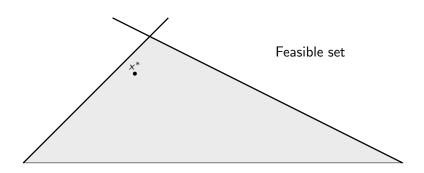
4.
$$S_i := \sum_{j; \ d_{ij} > 0, \ \alpha_j^+ = 1} d_{ij} x_j^{\Delta} - \sum_{j; \ d_{ij} < 0, \ \alpha_j^- = 1} d_{ij} x_j^{\Delta}, \ \forall i \in I;$$

- 5. **for all** $j \in \{1, ..., n\}$ **do**
- 6. **if** $\alpha_j^+ = 1$ **then** $\delta_j^+ := \inf_{i \in I; \ S_i > 0, \ d_{ij} > 0} \frac{R_i}{S_i};$
- 7. **if** $\alpha_j^- = 1$ **then** $\delta_j^- := \inf_{i \in I; \ S_i > 0, \ d_{ij} < 0} \frac{R_i}{S_i};$
- 8. for all $i \in I$ do
- 9. if $D_i \cdot x^* + \sum_{k; d_{ik} > 0} d_{ik} x_k^{\Delta} \delta_k^+ + \sum_{k; d_{ik} < 0} d_{ik} x_k^{\Delta} \delta_k^- = d_i$ then
- 10. $I := I \setminus \{i\};$
- 11. for all $j \in \{1, ..., n\}$ do
- 12. **if** $d_{ij} > 0$ **then** $\alpha_i^+ := 0$;
- 13. **if** $d_{ij} < 0$ **then** $\alpha_j^- := 0$;

Consider the inequality system

$$-x_1 + x_2 \le 2,$$

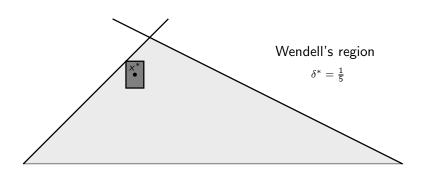
$$x_1 + 2x_2 \le 12,$$



Consider the inequality system

$$-x_1 + x_2 \le 2,$$

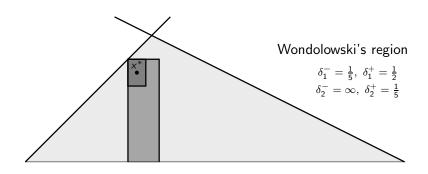
$$x_1 + 2x_2 \le 12,$$



Consider the inequality system

$$-x_1 + x_2 \le 2,$$

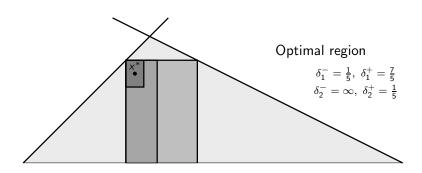
$$x_1 + 2x_2 \le 12,$$



Consider the inequality system

$$-x_1 + x_2 \le 2,$$

$$x_1 + 2x_2 \le 12,$$



Linear programming issues

Consider a linear programming problem

min
$$c^T x$$
 subject to $Ax = b, x \ge 0$,

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

Let x^* be an optimal solution.

Linear programming issues

Consider a linear programming problem

min
$$c^T x$$
 subject to $Ax = b, x \ge 0$,

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

Let x^* be an optimal solution.

Invariacies

- optimal basis invariancy
- support set invariancy
- optimal partition invariancy

Optimal basis invariancy

Let $B \subseteq \{1, \ldots, n\}$ be an optimal basis and $N := \{1, \ldots, n\} \setminus B$. *Invariancy:* How much can c perturb such that B remains optimal basis.

The invariancy region is described by

$$c_N - (A_B^{-1}A_N)^T c_B \ge 0.$$

- ▶ It is linear inequality system w.r.t. variables c
- ► Tolerance approach can be directly applied
- Related to simplex method

Support set invariancy

Support for x^* is defined as $\sigma(x^*) := \{i \mid x_i^* > 0\}.$

Invariancy: How much can c perturb such that there is optimal solution x^0 such that $\sigma(x^0) = \sigma(x^*)$.

Support set invariancy

Support for x^* is defined as $\sigma(x^*) := \{i \mid x_i^* > 0\}.$

Invariancy: How much can c perturb such that there is optimal solution x^0 such that $\sigma(x^0) = \sigma(x^*)$.

Optimal partition invariancy

Optimal partition of $\{1,\ldots,n\}$ into disjoint sets

$$\mathcal{B} := \{i \mid x_i > 0 \text{ for some optimal } x\},$$

$$\mathcal{N} := \{i \mid c_i - A_{i}^T y > 0 \text{ for some dual optimal } y\}.$$

Invariancy: How much can *c* perturb such that the optimal partition remains the same.

Support set and optimal partition invariancy

- ▶ Denote $Z := \{1, \ldots, n\} \setminus \sigma(x^*)$
- ▶ Suppose that $\{x \mid Ax = 0, x_Z = 0\} = \{0\}$
- ▶ Let g_k , $k \in K$, be all extremal directions of

$$\{x \mid Ax = 0, x_Z \ge 0\}.$$

Support set and optimal partition invariancy

- ▶ Denote $Z := \{1, \ldots, n\} \setminus \sigma(x^*)$
- ▶ Suppose that $\{x \mid Ax = 0, x_Z = 0\} = \{0\}$
- ▶ Let g_k , $k \in K$, be all extremal directions of

$$\{x \mid Ax = 0, x_Z \ge 0\}.$$

The support set invariancy region is described by

$$g_k^T c \ge 0, \quad k \in K,$$

Support set and optimal partition invariancy

- ▶ Denote $Z := \{1, \ldots, n\} \setminus \sigma(x^*)$
- ▶ Suppose that $\{x \mid Ax = 0, x_Z = 0\} = \{0\}$
- ▶ Let g_k , $k \in K$, be all extremal directions of

$$\{x \mid Ax = 0, x_Z \ge 0\}.$$

The support set invariancy region is described by

$$g_k^T c \geq 0, \quad k \in K,$$

The optimal partition invariancy region is described by

$$g_k^T c > 0, \quad k \in K,$$

as long as x^* is a strictly complementary solution (i.e., $\sigma(x^* = \mathcal{B})$).

Properties

- ▶ It is linear inequality system w.r.t. variables c
- ▶ Tolerance approach can be directly applied
- Support set invariancy region is maximal region where x* remains optimal

Theorem (Hladík, 2008)

Let $x^{\Delta} := e$ and δ^* be the maximal (Wendell's) symmetric tolerance for the support set invariancy. Then checking whether $\delta^* \leq 1$ is NP-hard.

Sketch of Proof.

Maximal tolerance δ^* is computed by

max
$$\delta$$
 subject to $\gamma^T x^* \leq \gamma^T x \ \forall x \in \mathcal{X} \ \forall \gamma : |\gamma - c| \leq \delta e$,

or, equivalently

inf
$$\delta$$
 subject to $\gamma^T x^* > \gamma^T x$, $x \in \mathcal{X}$, $|\gamma - c| \le \delta e$.

Substitute $z := x - x^*$ and simplify to

inf
$$\delta$$
 subject to $c^Tz - \delta e^T|z| < 0$, $Az = b - Ax^*$, $z \ge -x^*$.

Construct a polynomial reduction from the NP-hard problem of testing solvability of

$$|Mx| \le e, \ e^T|x| > 1.$$

Right-hand side coefficients

Optimal basis invariancy

Let $B \subseteq \{1, \dots, n\}$ be optimal basis. Then the invariancy region is described by

$$A_B^{-1}b \geq 0.$$

Support set and optimal partition invariancy

Let $P := \sigma(x^*)$ and suppose that $\{y \mid A_P^T y = 0\} = \{0\}$. Let h_k , $k \in K'$, are all extremal directions of $\{y \mid A_P^T y \leq 0\}$. Then the support set invariancy region is described by

$$h_k^T b < 0, \quad k \in K'.$$

The optimal partition invariancy region is the same as long as x^* is strictly complementary optimal solution.

Linear programming issues

Conclusion

Optimal basis vs. support set and optimal partition invariancy:

- Objective function coefficients:
 - Optimal basis invariancy region is smaller. (particularly for degenerate optimal solution)
- Right-hand side coefficients:
 - Optimal basis invariancy region is larger.
 (particularly for degenerate optimal solution)
 - But: Optimal basis invariancy applicable only for basic solutions.

Last slide

The End.