Computing the range of real eigenvalues of an interval matrix

Milan Hladík & David Daney

INRIA, project Coprin Sophia Antipolis, France

SWIM 08, Montpellier, France June 19–20, 2008

Introduction

Notation

An interval matrix

$$\mathbf{A} = [\underline{A}, \overline{A}] = \{ A \in \mathbb{R}^{n \times n} \mid \underline{A} \le A \le \overline{A} \},\$$

Midpoint and radius of $\boldsymbol{\mathsf{A}}$

$$A_c := rac{1}{2}(\underline{A} + \overline{A}), \quad A_\Delta := rac{1}{2}(\overline{A} - \underline{A}).$$

Aim

Determine eigenvalue set

$$\Lambda := \{\lambda \in \mathbb{R}; \ Ax = \lambda x, \ x \neq 0, \ A \in \mathbf{A} \}$$

Complexity

Checking $0 \in \Lambda$ is NP-hard.

Milan Hladík & David Daney (INRIA)

Algorithm

Algorithm (Approximation of Λ)

• Compute initial bounds $\underline{\lambda}^0$, $\overline{\lambda}^0$ such that $\Lambda \subseteq \boldsymbol{\lambda}^0 := [\underline{\lambda}^0, \overline{\lambda}^0]$;

2
$$L := \{ \boldsymbol{\lambda}^{\boldsymbol{0}} \}$$
, $L_{\mathrm{inn}} := \emptyset$, $L_{\mathrm{unc}} := \emptyset$;

● while $L \neq \emptyset$ do

• choose and remove some λ from L;

- (OUTER TEST) if $\lambda \cap \Lambda = \emptyset$ then loop;
- **③** (INNER TEST) if λ ⊆ Λ then $L_{inn} := L_{inn} ∪ {λ}$ and loop;
- (PRECISION TEST) if $\lambda_{\Delta} < \varepsilon$ then $L_{unc} := L_{unc} \cup \{\lambda\}$ and loop;
- $\begin{array}{l} \bullet \quad (\text{DIVISION}) \\ \boldsymbol{\lambda}^1 := [\underline{\lambda}, \lambda_c], \ \boldsymbol{\lambda}^2 := [\lambda_c, \overline{\lambda}], \ \boldsymbol{L} := \boldsymbol{L} \cup \{ \boldsymbol{\lambda}^1, \boldsymbol{\lambda}^2 \} \text{ and loop;} \end{array}$

• return L_{inn} as inner and L_{unc} as unrecognized intervals;

Implementation of the list L

Implemented as a stack (LIFO), useful properties:

- neighbor of an inner box cannot be outer
- neighbor of an outer box cannot be inner

Initial bounds (Rohn, 1998)

Let

$$S_c := rac{1}{2} \left(A_c + A_c^T
ight), \ \ S_\Delta := rac{1}{2} \left(A_\Delta + A_\Delta^T
ight).$$

Then $\Lambda \subseteq \boldsymbol{\lambda}^{0} := [\underline{\lambda}^{0}, \overline{\lambda}^{0}]$, where

$$\underline{\lambda}^{0} = \lambda_{\min}(S_{c}) - \rho(S_{\Delta}),$$

$$\overline{\lambda}^{0} = \lambda_{\max}(S_{c}) + \rho(S_{\Delta}).$$

Milan Hladík & David Daney (INRIA)

Remark

 λ is eigenvalue of A iff $A - \lambda I$ is singular.

Proposition

If the interval matrix $\mathbf{A} - \lambda I$ is regular, then λ is an outer interval.

Idea

Put $M := A - \lambda I$ and check regularity of M.

Theorem (Sufficient regularity condition)

An interval matrix **M** is regular if M_c is nonsingular and $\rho(|M_c^{-1}|M_{\Delta}) < 1$.

Outer test: Jansson & Rohn method

Theorem (Jansson & Rohn, 1999)

Let $b \in \mathbb{R}^n$ and consider $\mathbf{M}x = b$. The solution set is described by

 $|M_c x - b| \leq M_{\Delta}|x|.$

Then **M** is regular if and only if its any component is bounded.

Algorithm (Basic scheme)

- **1** Select $b \in \mathbb{R}^n$ and the initial orthant;
- ② Check for unboundedness. If so, then **M** is not regular;
- Repeat for the neighboring orthants, and so on;
- If inspected the whole component, then M is regular.

Properties

• Not necessarily exponential complexity.

Outer test: ILS method

Proposition

 ${\bf M}$ is regular iff there is no solution of the interval system

$$Mx = 0, \|x\|_{\infty} = 1.$$

Algorithm (ILS method)

- For i = 1, ..., n do
 - **0** $\mathbf{b} := (\text{the } i\text{-th column of } \mathbf{M}), \mathbf{M}' := (\mathbf{M} \text{ without the } i\text{-th column});$
 - Solve (approximately) the interval linear system

$$\mathbf{M}'x' = -\mathbf{b}, \ -e \le x' \le e;$$

- 3 If it has possibly a solution, then stop, M needn't be regular;
- Onclude that M is regular.

Properties

• We obtain also estimation of eigenvectors.

Inner test

Algorithm (Inner test for λ)

- Call Jansson & Rohn algorithm with $\mathbf{M} := \mathbf{A} \lambda_c I$;
- **2** If **M** is regular then stop, λ is not inner interval;
- **③** else, let $z \in \{\pm 1\}^n$ be a sign vector for the "unbounded orthant";
- Solve linear program

$$\max \{ z^{\mathsf{T}} x^1 - z^{\mathsf{T}} x^2; (A_c - A_\Delta \operatorname{diag}(z))(x^1 - x^2) - \underline{\lambda} x^1 + \overline{\lambda} x^2 \leq b, \\ (A_c + A_\Delta \operatorname{diag}(z))(x^1 - x^2) - \overline{\lambda} x^1 + \underline{\lambda} x^2 \geq b, \\ \operatorname{diag}(z)(x^1 - x^2) \geq 0, \ x^1, x^2 \geq 0 \}$$

() If it is unbounded then λ is an inner interval.

Improvements

• Remember the sign vector *z* for the following test.

Milan Hladík & David Daney (INRIA)

Exact bounds

Theorem (Rohn, 1993)

Let $\lambda \in \partial \Lambda$. Then there are $x, p \in \mathbb{R}^n \setminus \{0\}$ and $y, z \in \{\pm 1\}^n$ such that

$$\begin{split} & \left(A_c - \operatorname{diag}(y) \, A_\Delta \operatorname{diag}(z)\right) x = \lambda x, \\ & \left(A_c^T - \operatorname{diag}(z) \, A_\Delta^T \operatorname{diag}(y)\right) p = \lambda p, \\ & \operatorname{diag}(z) \, x \geq 0, \ \operatorname{diag}(y) \, p \geq 0. \end{split}$$

Algorithm (Exact bound candidates for λ)

- Call ILS method with the input matrix $\mathbf{A} \lambda I$ to obtain an outer approximation \mathbf{x} of the right eigenvectors;
- Call ILS method with the input matrix $(\mathbf{A} \lambda I)^T$ to obtain an outer approximation **p** of the left eigenvectors;
- If the number of possible signs of x and p is small then enumerate all possibilities.

Numerical experiments

n	ε	R	time
5	0.1	1	2 sec
10	0.1	0.5	9 sec
10	0.1	5	1 min 12 sec
15	0.1	0.1	37 sec
15	0.1	0.5	10 min 29 sec
15	0.1	1	7 min 59 sec
20	0.1	0.1	2 min 16 sec
20	0.1	0.5	21 min 6 sec
25	0.1	0.01	5 min 46 sec
25	0.1	0.05	10 min 39 sec
30	0.01	0.01	14 min 37 sec
30	0.01	0.1	48 min 31 sec

- *n*=matrix dimension
- ε=accuracy
- random matrices A
- entries of A_c in uniform distribution [-20, 20]
- entries of A_∆ in uniform distribution [0, R]
- exact bounds found
- not rigorous: GLPK (linear programs) CLAPACK (linear algebra)

Numerical experiments

- red = eigenvalue set Λ ,
- yellow = sufficient outer test condition,
- green = Jansson & Rohn method

Random matrix, n = 30, R = 0.1,computing time 48 min 31 sec.

Random symmetric matrix, n = 15, R = 0.5,computing time 13 min 48 sec.

Random $\mathbf{A}^T \mathbf{A}$ matrix, n = 15, R = 0.02,computing time 1 min 58 sec. - +++ + +

Random nonnegative matrix, n = 15, R = 0.2,computing time 2 min 22 sec.

Last slide

Other approaches

• Interval analysis techniques (filtering, branch & prune, ...) for

$$\mathbf{A}x = \lambda x, \ \|x\|_{\infty} = 1, \ \lambda \in \boldsymbol{\lambda}^{0}.$$

Efficient for n < 5.

• Gerschorin discs, Cassini ovals, ... no sharp results.

Present and future work

- Eigenvalues of symmetric interval matrix;
- Singular values of interval matrix;
- Complex eigenvalues of interval matrix.