Tolerances in portfolio selection via interval linear programming

Milan Hladík

Department of Applied Mathematics Charles University, Prague

MME 2008, Liberec, Czech Republic September 17–19

Introduction

Definition

An interval matrix

$$A' = [\underline{A}, \overline{A}] = \{A \in \mathbb{R}^{m \times n} \mid \underline{A} \le A \le \overline{A}\},$$

Midpoint and radius of A^I

$$A_c \equiv \frac{1}{2}(\underline{A} + \overline{A}), \quad A_{\Delta} \equiv \frac{1}{2}(\overline{A} - \underline{A}).$$

Definition

Interval linear program is a family

$$f(A, b, c) \equiv \min c^T x$$
 subject to $Ax \ge b, x \ge 0$,

where $A \in A^I$, $b \in b^I$, $c \in c^I$.

Introduction

Definition

Lower and upper bounds of the optimal value

$$\underline{f} := \inf f(A, b, c)$$
 subject to $A \in A^I, b \in b^I, c \in c^I,$
 $\overline{f} := \sup f(A, b, c)$ subject to $A \in A^I, b \in b^I, c \in c^I.$

Theorem

We have

$$\underline{f} = \inf \underline{c}^T x$$
 subject to $\overline{A}x \ge \underline{b}$, $x \ge 0$.

If $\underline{A}x \geq \overline{b}$, $x \geq 0$ is feasible then

$$\overline{f} = \sup \overline{b}^T y$$
 subject to $\underline{A}^T y \leq \overline{c}, y \geq 0.$

Problem statement

Consider

$$\min c_c^T x$$
 subject to $A_c x \ge b_c, x \ge 0$,

a let f^* be its optimal value. Given:

- bounds $\overline{f} < f^* < \overline{f}$;
- perturbation rates $A_{\Delta}, b_{\Delta}, c_{\Delta} \geq 0$.

Our goal

Find maximal $\delta > 0$ such that

$$\underline{f} \leq f(A, b, c) \leq \overline{f}$$

for all $A \in A_{\delta}^{I}$, $b \in b_{\delta}^{I}$ and $c \in c_{\delta}^{I}$, where

$$A_{\delta}^{I} := [A_{c} - \delta \cdot A_{\Delta}, A_{c} + \delta \cdot A_{\Delta}], \quad b_{\delta}^{I} := [b_{c} - \delta \cdot b_{\Delta}, b_{c} + \delta \cdot b_{\Delta}],$$

$$c_{\delta}^{I} := [c_{c} - \delta \cdot c_{\Delta}, c_{c} + \delta \cdot c_{\Delta}].$$

Main result

Theorem

Let

$$\begin{split} \delta^1 := \inf \delta \ \textit{subject to} \ -c_c^T x + \delta \cdot c_\Delta^T x + \underline{f} \geq 0, \\ A_c x - b_c + \delta \cdot \left(A_\Delta x + b_\Delta \right) \geq 0, \ x \geq 0, \\ \delta^2 := \inf \delta \ \textit{subject to} \ b_c^T y + \delta \cdot b_\Delta^T y - \overline{f} \geq 0, \\ -A_c^T y + c_c + \delta \cdot \left(A_\Delta^T y + c_\Delta \right) \geq 0, \ y \geq 0, \end{split}$$

Let $0 \le \delta^* < \min(\delta^1, \delta^2)$. If the linear system

$$(A_c - \delta^* \cdot A_{\Delta})x \ge b_c + \delta^* \cdot b_{\Delta}$$

is feasible then $f(A,b,c)\in [\underline{f},\overline{f}]$ for all $A\in A_{\delta^*}^I$, $b\in b_{\delta^*}^I$ and $c\in c_{\delta^*}^I$.

Main result

Remark

 The optimization problems have the form of generalized linear fractional programs. These programs have the form of

$$\sup \left(\inf_{i} \frac{P_{i}.x}{Q_{i}.x}\right) \text{ subject to } Qx > 0, Rx \ge r,$$

(where P_i and Q_i denotes i-th row of P and Q_i respectively), or,

$$\sup \alpha \ \text{ subject to } \ \textit{Px} - \alpha \cdot \textit{Qx} \geq 0, \ \textit{Qx} \geq 0, \ \textit{Rx} \geq \textit{r},$$

They are solvable in polynomial time using an interior point method.

ullet Generally, δ^* is not the best possible, but mostly it is.

Application: portfolio selection

Given:

- J possible investments;
- T time periods;
- r_{jt} , return on investment j in time period t;
- \bullet μ , risk aversion parameter (upper bound for risk).

Then:

- Estimated reward on investment j: $R_j := \frac{1}{T} \sum_{t=1}^{T} r_{jt}$;
- Risk measure of investment j: $\frac{1}{T} \sum_{t=1}^{I} |r_{jt} R_j|$;
- Maximal allowed risk: $\frac{1}{T} \sum_{t=1}^{T} \left| \sum_{j=1}^{J} (r_{jt} R_j) x_j \right| \le \mu.$

Application: portfolio selection

Portfolio selection problem formulation

$$\begin{aligned} \max & \sum_{j=1}^J R_j x_j \\ \text{subject to } & -y_j \leq \sum_{j=1}^J (r_{jt} - R_j) x_j \leq y_t, \quad \forall t = 1, \dots, T, \\ & \sum_{j=1}^J x_j = 1, \ \frac{1}{T} \sum_{t=1}^T y_t \leq \mu, \\ & x_j \geq 0, \quad \forall j = 1, \dots, J, \end{aligned}$$

where

$$R_j := \frac{1}{T} \sum_{t=1}^T r_{jt}.$$

Example

Example

J=4 investments, T=5 time periods, $\mu=10$ risk aversion parameter. The returns:

time period t	reward on investment			
	1	2	3	4
1	11	20	9	10
2	13	25	11	13
3	10	17	12	11
4	12	21	11	13
5	12	19	13	14

The optimal return is 12.5.

Example

Tolerances for optimal return being within [6, 20]:

① Put $(r_{\Delta})_{21} = 1$, and $(r_{\Delta})_{jt} = 0$ otherwise. We get

$$\delta^1 = \infty, \quad \delta^2 = 14.8069.$$

② Put $(r_{\Delta})_{2t}=1$, $t=1,\ldots,T$, and $(r_{\Delta})_{jt}=0$, $j\neq 2$, $t=1,\ldots,T$. We get

$$\delta^1 = \infty, \quad \delta^2 = 2.9614.$$

3 Put $(r_{\Delta})_{jt} = 1$, j = 1, ..., J, t = 1, ..., T. We get

$$\delta^1 = 0.04545, \quad \delta^2 = 0.1575.$$

Last slide

The End.