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Introduction

Definition

An interval matrix

AI = [A,A] = {A ∈ Rm×n | A ≤ A ≤ A},

Midpoint and radius of AI

Ac ≡
1

2
(A + A), A∆ ≡ 1

2
(A− A).

Definition

Interval linear program is a family

f (A, b, c) ≡ min cT x subject to Ax ≥ b, x ≥ 0,

where A ∈ AI , b ∈ bI , c ∈ c I .
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Introduction

Definition

Lower and upper bounds of the optimal value

f := inf f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I ,

f := sup f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I .

Theorem

We have

f = inf cT x subject to Ax ≥ b, x ≥ 0.

If Ax ≥ b, x ≥ 0 is feasible then

f = sup b
T

y subject to AT y ≤ c , y ≥ 0.
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Problem statement

Consider

min cT
c x subject to Acx ≥ bc , x ≥ 0,

a let f ∗ be its optimal value. Given:

bounds f < f ∗ < f ;

perturbation rates A∆, b∆, c∆ ≥ 0.

Our goal

Find maximal δ > 0 such that

f ≤ f (A, b, c) ≤ f

for all A ∈ AI
δ, b ∈ bI

δ and c ∈ c I
δ , where

AI
δ := [Ac − δ · A∆,Ac + δ · A∆], bI

δ := [bc − δ · b∆, bc + δ · b∆],

c I
δ := [cc − δ · c∆, cc + δ · c∆].
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Main result

Theorem

Let

δ1 := inf δ subject to −cT
c x + δ · cT

∆x + f ≥ 0,

Acx − bc + δ ·
(
A∆x + b∆

)
≥ 0, x ≥ 0,

δ2 := inf δ subject to bT
c y + δ · bT

∆y − f ≥ 0,

−AT
c y + cc + δ ·

(
AT

∆y + c∆

)
≥ 0, y ≥ 0,

Let 0 ≤ δ∗ < min(δ1, δ2). If the linear system(
Ac − δ∗ · A∆

)
x ≥ bc + δ∗ · b∆

is feasible then f (A, b, c) ∈ [f , f ] for all A ∈ AI
δ∗ , b ∈ bI

δ∗ and c ∈ c I
δ∗ .
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Main result

Remark

The optimization problems have the form of generalized linear
fractional programs. These programs have the form of

sup
(

inf
i

Pi·x
Qi·x

)
subject to Qx > 0, Rx ≥ r ,

(where Pi· and Qi· denotes i-th row of P and Q, respectively), or,

supα subject to Px − α · Qx ≥ 0, Qx ≥ 0, Rx ≥ r ,

They are solvable in polynomial time using an interior point method.

Generally, δ∗ is not the best possible, but mostly it is.
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Application: portfolio selection

Given:

J possible investments;

T time periods;

rjt , return on investment j in time period t;

µ, risk aversion parameter (upper bound for risk).

Then:

Estimated reward on investment j : Rj :=
1

T

T∑
t=1

rjt ;

Risk measure of investment j :
1

T

T∑
t=1

|rjt − Rj |;

Maximal allowed risk:
1

T

T∑
t=1

∣∣∣ J∑
j=1

(rjt − Rj)xj

∣∣∣ ≤ µ.
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Application: portfolio selection

Portfolio selection problem formulation

max
J∑

j=1

Rjxj

subject to −yj ≤
J∑

j=1

(rjt − Rj)xj ≤ yt , ∀t = 1, . . . ,T ,

J∑
j=1

xj = 1,
1

T

T∑
t=1

yt ≤ µ,

xj ≥ 0, ∀j = 1, . . . , J,

where

Rj :=
1

T

T∑
t=1

rjt .
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Example

Example

J = 4 investments, T = 5 time periods, µ = 10 risk aversion parameter.
The returns:

time period t reward on investment
1 2 3 4

1 11 20 9 10
2 13 25 11 13
3 10 17 12 11
4 12 21 11 13
5 12 19 13 14

The optimal return is 12.5.
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Example

Tolerances for optimal return being within [6, 20]:

1 Put (r∆)21 = 1, and (r∆)jt = 0 otherwise. We get

δ1 = ∞, δ2 = 14.8069.

2 Put (r∆)2t = 1, t = 1, . . . ,T , and (r∆)jt = 0, j 6= 2, t = 1, . . . ,T .
We get

δ1 = ∞, δ2 = 2.9614.

3 Put (r∆)jt = 1, j = 1, . . . , J, t = 1, . . . ,T . We get

δ1 = 0.04545, δ2 = 0.1575.
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Last slide

The End.
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