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Abstract. We are concerned with nonlinear programming problems the input data in which vary in some real compact intervals. The question is to determine bounds of the optimal values. We present a general approach, where, under some assumption, the lower and upper bounds are computable by using two optimization problems. Even though these two optimization problems are hard to solve in general, we show that for some particular subclasses they can be reduced to easy problems. Subclasses that are considered are convex  quadratic programming and posynomial geometric programming.
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1. Introduction

Mathematical programming is widely used to model practical problems. In real world applications, however, input data are not always known constants and are subject to diverse uncertainties. Various approaches were developed to deal with uncertainties. Within this paper we assume that we are given interval estimates of the problem quantities.

We focus on nonlinear programming problems under interval uncertainty and our aim is to compute the range of optimal values for all instances of the interval quantities. This knowledge provide the decision maker with useful information for making more appropriate decisions.

We generalize the result of (Hladík, 2007) on optimal value range of interval linear programming problems. Our approach is applicable for various classes of nonlinear programs with interval data, however, better approximations are obtained in the case when duality gap is zero and dependences between quantities do not occur. We discuss some special cases later within this paper.

First, we introduce some notation from interval analysis (Alefeld & Herzberger, 1983). An interval matrix is defined as 
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 we denote the midpoint and the radius of 
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2. General approach
By an interval nonlinear program we mean the family of nonlinear programs 
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Let us consider a dual problem to (1) having the form of
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 are functions depending on 
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Strong duality means that a finite optimal value to one problem ensures the existence of an optimal solution to the other and that their optimal objective values equals. The most restrictive notion of zero duality gap refers to the equation
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Suppose we are given a dual problem with weak duality property. Strong duality may not hold, but more tighter approximation is achieved under strong duality or zero duality gap assumption.

Next, denote the functions


[image: image24.wmf]],

[

  

subject to

  

)

(

inf

:

)

(

c

c

x

f

x

f

c

Î

=



[image: image25.wmf]],

[

],

[

  

subject to

  

)

(

sup

:

)

(

,

A

A

c

c

y

g

y

g

c

A

Î

Î

=


and so called solution sets
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We are now to formulate our main result on how to compute the lower and upper bound of the optimal value function.

Theorem 1. We have
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If the zero duality gap is guaranteed, then
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If the functions 
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Proof. 
1. (lower bound) From the definition of the lower bound it follows that
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2. (upper bound) Under zero duality gap assumption it follows that for every 
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Maximizing both sides of the equation over  
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Proof of inequality (3) is a slight modification of the previous way. From weak duality we have that
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holds for every 
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It is a simple consequence of Theorem 1 that if zero duality gap is assured and the functions 
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Applicability of Theorem 1 depends highly on how efficiently we are able to compute the functions 
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. Generally, it is a great challenge, but in some special nonlinear problems we can quite easily obtain simple structures. In the following sub-sections we apply the main result on convex quadratic programming and posynomial geometric programming.


Similar results for these two cases were developed independently by (Liu & Wang, 2007) and (Liu, 2006), respectively; for the space limitation of this paper we refer the reader to the original papers. Nevertheless, our approach is not only more general and applicable to another mathematical programming problems, but also more efficient. The differences are discussed in the subsections in detail. 

2.1 Convex quadratic programming

Consider a quadratic programming problem
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 is a positive semidefinite matrix. Its Dorn dual (Bazarra et al., 1993) is 
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First, suppose that the matrix 
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where the feasible sets are described by using Theorem 2.22 from (Rohn, 2006). 

Now we deal with the case when the matrix 
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The upper bound cannot be approximated neither (2), as the duality gap is not always zero, nor by (3) as there is a multiple appearance of 
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. Nevertheless, the nonzero duality gap happens rarely and we can formulate some sufficient conditions. 

The only case when the duality gap is nonzero is when both the primal and dual problems are infeasible. Checking their infeasibility for all instances of interval data is a hard problem; we can, however, use the following sufficient conditions:

1. From Theorem 2.26 in (Rohn, 2006) we have that if the inequality system 
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2. From Theorem 2.23 in (Rohn, 2006)  we get that if the inequality system 
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3. Duality gap iz zero if the matrix 
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In the case when the duality gap is zero, we can compute the approximation of the upper bound of the optimal value function by (2) as follows
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Notice that the feasible set is described by using Gerlach theorem—see e.g. (Rohn, 2006)—and the objective function
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Nevertheless, better result can be derived. As 
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If zero duality gap is not guaranteed, we have only approximation from below
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Both the programs (4) and (5) are simple convex quadratic programming problems. In contrary to (Liu & Wang, 2007), we use much less variables and we are also able to deal with uncertainties in the matrix 
[image: image86.wmf]C

. Moreover, we also take into account the possibility of nonzero duality gap.

Example 1. Consider the convex quadratic program with input data given by
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which is a slight modification of the example in (Liu & Wang, 2007).

By (4), the lower bound of the optimal value function is 


[image: image88.wmf]5

.

3

    

0

 

,

4

4

1

2

1

1

  

subject to

  

1

5

2

1

1

2

inf

-

=

³

÷

÷

ø

ö

ç

ç

è

æ

£

÷

÷

ø

ö

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

x

x

x

x

x

f

T


 Now we verify that there is zero duality gap for all instances of interval data. This can be easily seen, as any of the three sufficient conditions is fulfilled. Thus the upper bound of the optimal value function is computable by (5), and we obtain
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2.2 Posynomial geometric programming

A posynomial geometric program is a problem of the form (Bazaraa, 1993, Boţ et al., 2006, Liu, 2006)
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By the definition, 
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Duality gap is zero as long as the dual problem is feasible and the primal problem has in interior feasible point.


Now, suppose that the coefficients 
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To use Theorem 1 we have to determine the function 
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and the set 
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 is described analogously by the constraints
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According to Theorem 1, the lower bound of the optimal value function is 
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Notice that this optimization problem is not easy in general. What we can do is, for instance, to decompose it into 
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Surprisingly, the upper bound of the optimal value function is much more easy to compute than the lower bound is. Suppose that zero duality gap is assured for all instances of interval data. By  Theorem 1,
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Using Theorem 2.13 in (Rohn, 2006), we get that the set 
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Thus, we obtain an optimization problem which is efficiently solvable. This problem exhibits less variables than the optimization problem proposed by (Liu, 2006). Our approach also takes into account possible uncertainty in the exponents 
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3. Conclusions

We proposed the general approach for computing the range of the optimal value function of nonlinear programming problems under interval uncertainty. Having an appropriate duality and assuming there are no dependences between the interval quantities, we are able to determine the optimal range in question by solving two optimization problems. These two problems are easy to solve at least for some particular classes of nonlinear programs. We discussed the approach for convex quadratic programs and posynomial geometric programs. We have seen, however, that exhibiting special structure of these cases yields better results than the general approach do. In these cases, we also obtained a bit better conclusions than the ones proposed in (Liu & Wang, 2007) and in (Liu, 2006).
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