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Introduction

Motivation: data uncertainty.

Definition

I An interval matrix

AI = [A, A] = {A ∈ R
m×n | A ≤ A ≤ A},

I Midpoint and radius of AI

Ac ≡
1

2
(A + A), A∆ ≡

1

2
(A − A).

Consider the interval nonlinear program

f (A, c) ≡ inf fc(x) subject to FA(x) ≤ 0,

where A ∈ AI , c ∈ c I .



Introduction

Lower and upper bounds of the optimal value

f ≡ inf f (A, c) subject to A ∈ AI , c ∈ c I ,

f ≡ sup f (A, c) subject to A ∈ AI , c ∈ c I .

Dual problem

g(A, c) ≡ sup gA,c(y) subject to GA,c(y) ≤ 0,

Suppose weak duality

f (A, c) ≥ g(A, c) ∀c ∈ c I , A ∈ AI .

Zero duality gap

f (A, c) = g(A, c) ∀c ∈ c I , A ∈ AI .



Introduction

Define functions

f (x) ≡ inf fc(x) subject to c ∈ c I ,

g(y) ≡ sup gA,c(y) subject to A ∈ AI , c ∈ c I ,

and solution sets

M ≡ {x ∈ R
n | FA(x) ≤ 0, A ∈ AI},

N ≡ {y ∈ R
k | GA,c(y) ≤ 0, A ∈ AI , c ∈ c I}.



Main theorem

Theorem
We have

f = inf f (x) subject to x ∈ M.

If the zero duality gap is guaranteed, then

f ≤ sup g(y) subject to y ∈ N.

If the functions GA,c(y) and gA,c(y) have no interval parameter in

common, then

f ≥ sup g(y) subject to y ∈ N.



Applications

Convex quadratic programming:

I inventory management

I economics (portfolio selection)

I engineering design, molecular study

Posynomial geometric programming:

I inventory and project management

I power control in communications systems

I engineering design (integrated circuits and gate sizing, truss
construction)



Convex quadratic programming

Consider a family

min xTCx + dT x subject to Ax ≤ b, x ≥ 0,

where A ∈ AI , C ∈ C I , b ∈ bI , d ∈ d I .

Suppose that C is a positive semidefinite ∀C ∈ C I .

Dorn dual

max−xTCx − bTu subject to 2Cx + ATu + d ≥ 0, u ≥ 0.

Lower bound

f = inf xTCx + dT x subject to Ax ≤ b, x ≥ 0.



Convex quadratic programming

Upper bound (achieved for C = C )

f ≥ sup−xTCx − bTu subject to 2Cx + A
T

u + d ≥ 0, u ≥ 0.

If duality gap is zero

f = sup−xTCx − bTu subject to 2Cx + A
T

u + d ≥ 0, u ≥ 0.

Sufficient conditions for zero duality gap:

I Feasibility of Ax ≤ b, x ≥ 0.

I Feasibility of 2Cx1 − 2Cx2 + ATu + d ≥ 0, u, x1, x2 ≥ 0.

I Positive definiteness for all C ∈ C .



Convex quadratic programming

Example (modified Liu & Wang, 2007)
Let

C =
(

[2,3] −1
−1 2

)

, d =
(

[−5,−3]
[1,2]

)

, A =
(

[1,2] 1
[2,3] [−1,−0.5]

)

, b =
(

[2,4]
[3,4]

)

.

Lower bound

f = inf xT
(

2 −1
−1 2

)

x +
(

−5
1

)

x subject to
(

1 1
2 −1

)

x ≤
(

4
4

)

, x ≥ 0

= −3.5

Duality gap is zero, thus

f = sup−xT
(

3 −1
−1 2

)

x −
(

2
3

)

u

subject to 2 ·
(

3 −1
−1 2

)

x +
(

2 3
3 −0.5

)

u +
(

−3
2

)

≥ 0, u ≥ 0

' −0.4821

Optimal value range is [−3.5,−0.4821].



Posynomial geometric programming

Consider

inf
∑

i∈I0

ci

n
∏

j=1

x
aij

j

subject to

∑

i∈Ik

ci

n
∏

j=1

x
aij

j ≤ 1, k = 1, . . . , m,

xj > 0, j = 1, . . . , n.

where I0 = {1, . . . , p0}, I1 = {p0 + 1, . . . , p1}, . . . ,
Im = {pm−1 + 1, . . . , p}, and ci > 0, i = 1, . . . , p.



Posynomial geometric programming

Dual problem

sup

(

p
∏

i=1

(

ci

yi

)yi

)(

m
∏

k=1

zzk

k

)

subject to

∑

i∈I0

yi = 1,

∑

i∈Ik

yi = zk , k = 1, . . . ,m,

p
∑

i=1

aijyi = 0, j = 1, . . . , n,

yi , zk ≥ 0, i = 1, . . . , p, k = 1, . . . ,m.

Duality gap is zero if the primal problem has an interior point.



Posynomial geometric programming

Suppose ci ∈ c I
i and aij ∈ aI

ij ∀i = 1, . . . , p, j = 1, . . . , n.

Proposition (sufficient condition for zero duality gap)

If the system

∑

i∈Ik

c i

n
∏

j=1

y
aij

j z
−aij

j < 1, k = 1, . . . , m,

yj , zj ≥ 1, j = 1, . . . , n.

has a solution y∗, z∗, then the vector x∗ defined as x∗

i ≡
y∗

i

z∗
i

is an

interior point of the primal problem for all ci ∈ c I
i and aij ∈ aI

ij .

Remark

I Easy to convert to posynomial geometric program

I Open: Is it also necessary condition for x∗ being interior?



Posynomial geometric programming

Lower bound (attained at ci = c i )

f = inf f (x) subject to x ∈ M.

We have aij = aij if xj ≥ 1 and aij = aij if xj < 1. Hence

f (x) =
∑

i∈I0

c i

n
∏

j=1

x
(aij )c−(aij )∆sgn(log(xj ))
j .

M is described by

∑

i∈Ik

c i

n
∏

j=1

x
(aij )c−(aij )∆sgn(log(xj ))
j ≤ 1, k = 1, . . . , m,

xj > 0, j = 1, . . . , n.



Posynomial geometric programming

Upper bound (attained at ci = c i )

f = sup g(y , z) subject to (y , z) ∈ N,

provided the duality gap is zero. Here,

g(y , z) =

(

p
∏

i=1

(

c i

yi

)yi

)(

m
∏

k=1

z
zk

k

)

,

and
∑

i∈I0

yi = 1,

∑

i∈Ik

yi = zk , k = 1, . . . ,m,

p
∑

i=1

aijyi ,≥ 0,

p
∑

i=1

aijyi ≤ 0, j = 1, . . . , n,

yi , zk ≥ 0, i = 1, . . . , p, k = 1, . . . ,m.



The End.


