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Introduction
Motivation: data uncertainty.
Definition
» An interval matrix
=[AA={AcR™"|A<A<A}

» Midpoint and radius of A’

Ac=(A+A), Apr=

l\)ln—\

Consider the interval nonlinear program
f(A,c) = inf f(x) subject to Fa(x) <0,

where Ae Al, c e ¢l.



Introduction
Lower and upper bounds of the optimal value

f=inff(A, c) subjectto Ac Al cec!,
f

sup f(A,c) subjectto Ac Al cec!.

Dual problem
g(A.c) = supgac(y) subject to Gac(y) <O,
Suppose weak duality
f(A,c)>g(Ac) Veec Ac Al
Zero duality gap

f(A,c)=g(Ac) Ycec ,Ac Al



Introduction

Define functions

f(x) = inf f(x) subject to c € ¢/,

g(y) =supgac(y) subjectto Ac Al cec,
and solution sets

M= {x€R"| Fa(x) <0,Ac A'},
NE{yeRk | Gacly) < 0,Ac Al cec!l.



Main theorem

Theorem
We have

f =inff(x) subject to x € M.
If the zero duality gap is guaranteed, then
f <supg(y) subjectto yc N.

If the functions Ga c(y) and gac(y) have no interval parameter in
common, then

f >supg(y) subject to y € N.



Applications

Convex quadratic programming:
> inventory management
» economics (portfolio selection)

» engineering design, molecular study

Posynomial geometric programming:
» inventory and project management
» power control in communications systems

» engineering design (integrated circuits and gate sizing, truss
construction)



Convex quadratic programming
Consider a family
minx’ Cx + d” x subject to Ax < b,x > 0,
where Ac Al, Ce C! beb! ded.
Suppose that C is a positive semidefinite VC € C'.
Dorn dual

max —x' Cx — b u subject to 2Cx+ ATu+d >0,u > 0.

Lower bound

f=infx"Cx+d"x subject to Ax < b, x > 0.



Convex quadratic programming

Upper bound (achieved for C = C)

f> sup—xT?x — QTU subject to 2Cx —i—ZTu +d>0,u>0.

If duality gap is zero

f=sup—x'Cx—b"u subject to 2Cx —FZTU +d>0,u>0.

Sufficient conditions for zero duality gap:
> Feasibility of Ax < b, x > 0.
» Feasibility of 2Cx! —2Cx2 + ATu+d >0, u,x!,x2 > 0.

» Positive definiteness for all C € C.



Convex quadratic programming

Example (modified Liu & Wang, 2007)
Let

(22 9= (5F5) A= (B tan) 2= (5.
Lower bound
F=infx (23 ) x4 () x subjectto (3 4)x<(§), x>0

=-35
Duality gap is zero, thus

Fosup—xT (55 )x= (3)u

subject to 2+ (% 31 ) x+ (3 35)u+ ()20, u=0
~ —0.4821

Optimal value range is [-3.5, —0.4821].



Posynomial geometric programming

Consider
n
o Sl
icly j=1
subject to

Zc;f[)g-a” <1, k=1,...,m,

i€ly j=1
xpi>0, j=1,...,n

where o ={1,...,po}, h ={po+1,...,p1}, ...,
Im={pm-1+1,...,p},and ¢; >0,i=1,...,p.



Posynomial geometric programming

o (1)) (11)

Zyi =1,

i€ly

Zy;:zk, k:l,...,m,

i€l

P
Za,-jy;:O, j:l,...,n,
i=1

Dual problem

subject to

Vi,zg >0, i=1....p, k=1....m.

Duality gap is zero if the primal problem has an interior point.



Posynomial geometric programming
Suppose ¢; € ¢/; and aj € a’,-j Vi=1l,...,p, j=1,...,n

Proposition (sufficient condition for zero duality gap)
If the system

n
— 5," 72,"
E c,-Hyj’zj <1, k=1,...,m,

icl,  j=1

yi.zg=21, j=1,...,n

has a solution y*, z*, then the vector x* defined as x;" = % is an

L
Zi

interior point of the primal problem for all ¢; € ¢'; and aj € a’,-j.

Remark

» Easy to convert to posynomial geometric program

» Open: Is it also necessary condition for x* being interior?



Posynomial geometric programming
Lower bound (attained at ¢; = ¢;)

f =inf f(x) subject to x € M.

We have aj; = a; if x; > 1and a;j = 3j; if x; < 1. Hence

=3¢ f[Xgau)c—(afj)Asgn(log(xm
L i .

i€l j=1

M is described by
ZQi ij(a;j)Cf(a,-j)Asgn(log(@)) < 1’ k = 1’ ., m,

i€ly j=1
xp>0, j=1,...,n



Posynomial geometric programming

Upper bound (attained at ¢; = ¢;)

f =supg(y,z) subjectto (y,z) €N,

provided the duality gap is zero. Here,

o= (16 ) (1)

1

and

Z}’i

i€l

Z}’i_

i€l

M'o

Il
A

i=1

YisZk =2

3y, > 0, Z a3y <

=1,

= Z, k—l,...,m,
<07 J: Y ’n7

>0, i=1, Py k=1



The End.



