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Abstract

This is a contribution to solvability of linear interval equations and
inequalities. In interval analysis we usually suppose that values from dif-
ferent intervals are mutually independent. This assumption can be some-
times too restrictive. In this article we derive extensions of Oettli–Prager
theorem and Gerlach theorem for the case there is a simple dependence
structure between coefficients of an interval system. The dependence is
given by equality of two submatrices of the constraint matrix.
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1 Introduction

Coefficients and right-hand sides of systems of linear equalities and inequalities are
rarely known exactly. In interval analysis we suppose that these values vary in some
real intervals independently. But in practical applications (for instance electrical
circuit problem [5, 6]) they are sometimes related. General case of parametric de-
pendences has been considered e.g. in [7, 9], where various algorithms for finding
inner and outer solutions were proposed. Linear interval systems with more specific
dependencies were studied e.g. in [1, 2]. There were derived basic characteristics
(shape, enclosures, etc.), especially for cases where the constraint matrix is supposed
to be symmetric or skew-symmetric. But any explicit condition such as Oettli–Prager
theorem [8] (for linear interval equations) or Gerlach Theorem [4] (for linear interval
inequalities) has never appeared.

In this paper we focus on weak solvability of linear interval systems with a simple
dependence structure and derive explicit (generally nonlinear) conditions for such a
solvability.

Let us introduce some notation. The i-th row of a matrix A is denoted by Ai,·,
the j-th column by A·,j . The vector e = (1, . . . , 1)T is the vector of all ones. An
interval matrix is defined as

AI = [A,A] = {A ∈ Rm×n | A ≤ A ≤ A},
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where A ≤ A are fixed matrices. By

Ac ≡ 1
2
(A + A), A∆ ≡ 1

2
(A−A)

we denote the midpoint and radius of AI , respectively. The interval matrix addition
and subtraction is defined as follows

AI + BI = [A + B,A + B],
AI −BI = [A−B,A−B].

A vector x ∈ Rn is called a weak solution of a linear interval system AIx = bI , if
Ax = b holds for some A ∈ AI , b ∈ bI . Analogously we define a term weak solution
for other types of interval systems (cf. [3]).

2 Generalization of Oettli–Prager theorem

In this section we generalize the Oettli–Prager [8] characterization of weak solutions
of linear interval equations to the case where there is a specific dependence between
some coefficients of the constraint matrix.

Lemma 1. Given s1, s2, pi, qi ∈ R, i = 1, . . . , n. Let us denote the function
f(u1, u2) ≡ s1u1 + s2u2 +

∑n
i=1 |piu1 + qiu2|. Then the problem

min {f(u1, u2); (u1, u2) ∈ R2} (1)

has an optimal solution (equal to zero) if and only if
n∑

i=1

|qi| ≥ |s2|,

n∑
i=1

|qkpi − qipk| ≥ |qks1 − pks2| ∀k = 1, . . . , n

holds.

Proof. The objective function f(u1, u2) is positive homogeneous and hence the prob-
lem (1) has an optimal solution iff f(u1, u2) ≥ 0 holds for u1 = ±1, u2 ∈ R and for
u1 = 0, u2 = ±1. Let us consider the following cases:

(i) Let u1 = 1. Then the function f(1, u2) = s1 + s2u2 +
∑n

i=1 |pi + qiu2| of one
parameter represents a broken line. It is sufficient to check nonnegativity of this
function in the breaks and nonnegativity of the limits in ±∞. The breaks are −pk

qk
,

qk 6= 0, k = 1, . . . , n. Hence we derive

∀k = 1, . . . , n, qk 6= 0 : s1 −
pk

qk
s2 +

n∑
i=1

∣∣∣pi −
pk

qk
qi

∣∣∣ ≥ 0. (2)

To be limu2→∞ f(1, u2) ≥ 0, it must the inequality
∑n

i=1 |qi| ≥ −s2 hold and to be
limu2→−∞ f(1, u2) ≥ 0, it must

∑n
i=1 |qi| ≥ s2 hold. We obtain next condition

n∑
i=1

|qi| ≥ |s2|. (3)
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(ii) Let u1 = −1. Then analogously as in first paragraph we obtain for the
function f(−1, u2) = −s1 + s2u2 +

∑n
i=1 | − pi + qiu2| the condition

∀k = 1, . . . , n, qk 6= 0 : −s1 +
pk

qk
s2 +

n∑
i=1

∣∣∣− pi +
pk

qk
qi

∣∣∣ ≥ 0, (4)

n∑
i=1

|qi| ≥ |s2|. (5)

All the conditions (2), (4) can we written in one

∀k = 1, . . . , n :
n∑

i=1

|piqk − pkqi| ≥ |s1qk − pks2|. (6)

The assumption qk 6= 0 is not necessary, for in the case qk = 0 the inequality (6) is
included in (3).

(iii). Let u1 = 0. Then the condition f(0,±1) ≥ 0 is included in the condition
(3).

Theorem 1. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm. Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x,y ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Bz = b, (7)
Ay + Cz = c (8)

if and only if they satisfy the following system of inequalities

A∆|x|+ B∆|z|+ b∆ ≥ |r1|, (9)
A∆|y|+ C∆|z|+ c∆ ≥ |r2|, (10)

B∆|z||y|T + C∆|z||x|T + b∆|y|T + c∆|x|T
+A∆|xyT − yxT | ≥ |r1yT − r2xT |, (11)

where r1 ≡ −Acx−Bcz + bc, r2 ≡ −Acy −Ccz + cc.

Proof. Denote aI ≡ AI
l,·, bI ≡ BI

l,·, cI ≡ CI
l,·, βI ≡ bI

l , γI ≡ cI
l . Consider the l-th

equations in systems (7)–(8) and denote them by

ax + bz = β, ay + cz = γ, (12)

where a ∈ aI , b ∈ bI , c ∈ cI , β ∈ βI , γ ∈ γI . Suppose that the vector a ∈ aI in
demand has the i-th component in the form ai ≡ ac

i + αia
∆
i for αi ∈ 〈−1, 1〉. The

condition (12) holds iff for a certain α ∈ 〈−1, 1〉n relations

acx +
n∑

i=1

αia
∆
i xi + bcz ∈ 〈βc − b∆|z| − β∆, βc + b∆|z|+ β∆〉,

acy +
n∑

i=1

αia
∆
i yi + ccz ∈ 〈γc − c∆|z| − γ∆, γc + c∆|z|+ γ∆〉
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hold. Equivalently, iff the following problem

max
{
0T α; −

n∑
i=1

αia
∆
i xi ≤ −r1 + β1,

n∑
i=1

αia
∆
i xi ≤ r1 + β1,

−
n∑

i=1

αia
∆
i yi ≤ −r2 + β2,

n∑
i=1

αia
∆
i yi ≤ r2 + β2,

α ≤ e, −α ≤ e
}

has an optimal solution for r1 ≡ −acx − bcz + βc, r2 ≡ −acy − ccz + γc, β1 ≡
β∆ + b∆|z|, β2 ≡ γ∆ + c∆|z|. From duality theory in linear programming this
problem has an optimal solution iff the problem

min
{

(−r1 + β1)u1 + (r1 + β1)u2 + (−r2 + β2)u3 + (r2 + β2)u4 +
n∑

i=1

(vi + wi);

−a∆
i xiu1 + a∆

i xiu2 − a∆
i yiu3 + a∆

i yiu4 + vi − wi = 0 ∀i = 1, . . . , n,

u1, u2, u3, u4, vi, wi ≥ 0 ∀i = 1, . . . , n

}
has an optimal solution. After substitution ũ1 ≡ u2−u1, ũ3 ≡ u4−u3 we can rewrite
this problem as

min
{

(r1 + β1)ũ1 + 2β1u1 + (r2 + β2)ũ3 + 2β2u3 +
n∑

i=1

(vi + wi);

a∆
i xiũ1 + a∆

i yiũ3 + vi − wi = 0 ∀i = 1, . . . , n,

u1 ≥ −ũ1, u3 ≥ −ũ3, u1, u3, vi, wi ≥ 0 ∀i = 1, . . . , n

}
.

For optimal vi, wi, u1, u3 we have u1 = (−ũ1)+, u3 = (−ũ3)+, and vi+wi = |a∆
i xiũ1+

a∆
i yiũ3| (since one of vi, wi is equal to zero). Hence the problem can be reformulated

as

min
{

(r1 + β1)ũ1 + 2β1(−ũ1)+ + (r2 + β2)ũ3 + 2β2(−ũ3)+

+
n∑

i=1

|a∆
i xiũ1 + a∆

i yiũ3|; ũ1, ũ3 ∈ R
}

.

The positive part of real number p is equal to p+ = 1
2(p+ |p|) and the problem comes

in the form

min
{

r1ũ1 + β1|ũ1|+ r2ũ3 + β2|ũ3|+
n∑

i=1

|a∆
i xiũ1 + a∆

i yiũ3|; ũ1, ũ3 ∈ R
}

. (13)

Now we use Lemma 1 with u1 replaced by ũ1, u2 replaced by ũ3, n by n + 2, and
next s1 ≡ r1, s2 ≡ r2, pi ≡ a∆

i xi (i = 1, . . . , n), pn+1 ≡ β1, pn+2 ≡ 0, qi ≡ a∆
i yi
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(i = 1, . . . , n), qn+1 ≡ 0, qn+2 ≡ β2. Hence the problem (13) has an optimum iff

n∑
i=1

a∆
i |xi|+ β1 ≥ |r1|,

n∑
i=1

a∆
i |yi|+ β2 ≥ |r2|,

β1|yk|+ β2|xk|+
n∑

i=1

a∆
i |ykxi − xkyi| ≥ |ykr1 − xkr2| ∀k = 1, . . . , n

holds, or, equivalently iff

a∆|x|+ b∆|z|+ β∆ ≥ |r1|,
a∆|y|+ c∆|z|+ γ∆ ≥ |r2|,

b∆|z||y|T + β∆|y|T + c∆|z||x|T + γ∆|x|T + a∆|xyT − yxT | ≥ |r1yT − r2xT |

holds. These inequalities represents the l-th inequalities from systems (9)–(11), which
proves the statement.

In the case that x = y we immediately have the following corollary.

Corollary 1. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm. Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Bz = b, (14)
Ax + Cz = c (15)

if and only if they represent a weak solution of the linear interval system

AIx + BIz = bI , (16)
AIx + CIz = cI , (17)
BIz−CIz = bI − cI . (18)

3 Generalization of Gerlach theorem

Now we generalize the Gerlach [4] characterization of weak solutions of linear interval
inequalities to the case where there is a specific dependence between some coefficients
of the constraint matrix.

Theorem 2. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm.Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x,y ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Bz ≤ b, (19)
Ay + Cz ≤ c (20)
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if and only if they satisfy the system of inequalities

A∆|x|+ B∆|z|+ b ≥ Acx + Bcz, (21)
A∆|y|+ C∆|z|+ c ≥ Acy + Ccz, (22)

r1|yk|+ r2|xk|+ A∆|ykx− xky| ≥ 0 ∀k = 1, . . . , n : xkyk < 0, (23)

where r1 ≡ b−Acx−Bcz + B∆|z|, r2 ≡ c−Acy −Ccz + C∆|z|.

Proof. Denote aI ≡ AI
l,·, bI ≡ BI

l,·, cI ≡ CI
l,·, βI ≡ bI

l , γI ≡ cI
l . Let us consider the

l-th inequalities in systems (19)–(20) and denote them by

ax + bz ≤ β, ay + cz ≤ γ, (24)

where a ∈ aI , b ∈ bI , c ∈ cI , β ∈ βI , γ ∈ γI . Let us consider the vector in demand
a ∈ aI in the form with the i-th component ai ≡ ac

i + αia
∆
i , αi ∈ 〈−1, 1〉. The

condition (24) holds iff for a certain α ∈ 〈−1, 1〉n we have

acx +
n∑

i=1

αia
∆
i xi + bcz ≤ β + b∆|z|,

acy +
n∑

i=1

αia
∆
i yi + ccz ≤ γ + c∆|z|

or, equivalently, iff the following problem

max
{
0T α;

n∑
i=1

αia
∆
i xi ≤ r1,

n∑
i=1

αia
∆
i yi ≤ r2, α ≤ e, −α ≤ e

}
,

where r1 ≡ β−acx−bcz+b∆|z|, r2 ≡ γ−acy−ccz+c∆|z|, has an optimal solution.
From the duality theory in linear programming this problem has an optimal solution
iff the same holds for the problem

min
{

r1u1 + r2u2 +
n∑

i=1

(vi + wi);

a∆
i xiu1 + a∆

i yiu2 + vi − wi = 0, u1, u2, vi, wi ≥ 0 ∀i = 1, . . . , n

}
.

For optimal solution vi, wi the relation vi + wi = |a∆
i xiu1 + a∆

i yiu2| holds. Hence we
can the linear programming problem rewrite as

min
{

r1u1 + r2u2 +
n∑

i=1

|a∆
i xiu1 + a∆

i yiu2|; u1, u2 ≥ 0
}

.

Since the objective function f(u1, u2) = r1u1 + r2u2 +
∑n

i=1 |a∆
i xiu1 + a∆

i yiu2| is
positive homogeneous, it is sufficient (similarly as in the proof of Lemma 1) to check
its nonnegativity only for special points:

(i) If u1 = 0, u2 = 1, then f(0, 1) ≥ 0 is equal to r2 +a∆|y| ≥ 0, which is the l-th
inequality from the system (22).
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(ii) Let u1 = 1, u2 ≥ 0. The function f(1, u2) represents a broken line with breaks
in u2 = 0 and in u2 = −xk

yk
≥ 0, yk 6= 0. For the first case the condition f(1, 0) ≥ 0

is equal to r1 + a∆|x| ≥ 0, which is the l-th inequality from the system (21). In the
second case, for the breaks of the objective function f(1, u2) we obtain the following
inequality

r1 + r2
−xk

yk
+

n∑
i=1

a∆
i

∣∣∣xi −
xk

yk
yi

∣∣∣ ≥ 0 ∀k = 1, . . . , n : xkyk ≤ 0, yk 6= 0.

Since −xk
yk

=
∣∣ − xk

yk

∣∣, the inequality is equal to (w.l.o.g. assume xk, yk 6= 0, for
otherwise we get redundant condition)

r1|yk|+ r2|xk|+ a∆|ykx− xky| ≥ 0, ∀k = 1, . . . , n : xkyk < 0,

which is the l-th inequality from the system (23).

Note that the system (23) from Theorem 2 is empty if x = y, or if x,y ≥ 0.
Hence from Theorem 2 two corollaries directly follow.

Corollary 2. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm. Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Bz ≤ b,

Ax + Cz ≤ c

if and only if x is a weak solution of interval system

AIx + BIz ≤ bI ,

AIx + CIz ≤ cI .

Corollary 3. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm. Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x,y ∈ Rn, z ∈ Rh form
a nonnegative solution of the system

Ax + Bz ≤ b,

Ay + Cz ≤ c

if and only if x is a solution of the system

Ax + Bz ≤ b,

Ay + Cz ≤ c.

Remark 1. Contrary to the situation in common analysis, in interval analysis it
is not generally possible to transform an interval system of equations AIx = bI

to the interval system of inequalities AIx ≤ bI , −AIx ≤ −bI . However, if the
interval system of inequalities is integrated with certain dependence structure, such
a transformation is possible. The interval system AIx = bI is weakly solvable iff there
exist A ∈ AI , b ∈ bI such that the system Ax+bxn+1 ≤ 0, A(−x)+b(−xn+1) ≤ 0,
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xn+1 = −1 is solvable. From Theorem 2 (with assignment y = −x, yn+1 = −xn+1)
it follows the solvability of the system

A∆|x|+ b∆|xn+1| ≥ Acx + bcxn+1,

A∆| − x|+ b∆| − xn+1| ≥ −Acx− bcxn+1,

(−Acx− bcxn+1)| − xk|+ (Acx + bcxn+1)|xk|+ A∆|0| ≥ 0 ∀k = 1, . . . , n + 1,

xn+1 = −1,

equivalently,

A∆|x|+ b∆ ≥ |Acx− bc|,

which is the statement of Oettli–Prager Theorem on solvability of AIx = bI .

4 Mixed equalities and inequalities

In previous sections we studied dependence structure for linear interval equations
and inequalities, respectively. Now we turn our attention to mixed linear interval
equations and inequalities with a dependence structure.

Theorem 3. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm. Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x,y ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Bz = b, (25)
Ay + Cz ≤ c (26)

if and only if they satisfy the system of inequalities

A∆|x|+ B∆|z|+ b∆ ≥ |r1|, (27)
A∆|y|+ r2 ≥ 0, (28)

−r1yT diag(sgnx) + r2|x|T + (b∆ + B∆|z|)|y|T + A∆|xyT − yxT | ≥ 0, (29)

where r1 ≡ bc −Acx−Bcz, r2 ≡ c−Acy −Ccz + C∆|z|.

Proof. Denote aI ≡ AI
l,·, bI ≡ BI

l,·, cI ≡ CI
l,·, βI ≡ bI

l , γI ≡ cI
l . Let us consider the

l-th equality and inequality in the systems (25) and (26) and denote them by

ax + bz = β, ay + cz ≤ γ, (30)

where a ∈ aI , b ∈ bI , c ∈ cI , β ∈ βI , γ ∈ γI . Let the vector a ∈ aI in demand have
its i-th component in the form ai ≡ ac

i + αia
∆
i , where αi ∈ 〈−1, 1〉. The condition

(24) holds iff for a certain α ∈ 〈−1, 1〉n we have

acx +
n∑

i=1

αia
∆
i xi + bcz ∈ 〈βc − b∆|z| − β∆, βc + b∆|z|+ β∆〉,

acy +
n∑

i=1

αia
∆
i yi + ccz ≤ γ + c∆|z|

8



or, equivalently iff the following problem

max
{
0T α; −

n∑
i=1

αia
∆
i xi ≤ −r1 + β1,

n∑
i=1

αia
∆
i xi ≤ r1 + β1,

n∑
i=1

αia
∆
i yi ≤ r2, α ≤ e, −α ≤ e

}
has an optimal solution (for r1 ≡ βc − acx − bcz, β1 ≡ β∆ + b∆|z|, r2 ≡ γ − acy −
ccz + c∆|z|). From the duality theory in linear programming this problem has an
optimal solution iff the problem

min
{
− (r1 − β1)u1 + (r1 + β1)u2 + r2u3 +

n∑
i=1

(vi + wi);

−a∆
i xiu1 + a∆

i xiu2 + a∆
i yiu3 + vi − wi = 0,

u1, u2, u3, vi, wi ≥ 0 ∀i = 1, . . . , n

}
has an optimal solution. After substitution ũ1 ≡ u2−u1 we can rewrite this problem
as

min
{

(r1 + β1)ũ1 + 2β1u1 + r2u3 +
n∑

i=1

(vi + wi);

a∆
i xiũ1 + a∆

i yiu3 + vi − wi = 0,

u1 ≥ −ũ1, u1, u3, vi, wi ≥ 0 ∀i = 1, . . . , n

}
.

For optimal solution vi, wi, u1 it must vi +wi = |a∆
i xiũ1 +a∆

i yiu3|, u1 = (−ũ1)+ hold.
Hence the problem is simplified to

min
{

(r1 + β1)ũ1 + 2β1(−ũ1)+ + r2u3 +
n∑

i=1

|a∆
i xiũ1 + a∆

i yiu3|;

ũ1 ∈ R, u3 ≥ 0
}

.

Since the positive part of a real number p is equal to p+ = 1
2(p + |p|), the linear

programming problem has the final form

min
{

r1ũ1 + r2u3 + β1|ũ1|+
n∑

i=1

|a∆
i xiũ1 + a∆

i yiu3|; ũ1 ∈ R, u3 ≥ 0
}

.

The objective function f(u1, u2) = r1ũ1 + r2u3 +β1|ũ1)|+
∑n

i=1 |a∆
i xiũ1 + a∆

i yiu3| of
this problem is positive homogeneous, thus it is sufficient (similar as in the proof of
Lemma 1) to check the nonnegativity only for some special points:

(i) If ũ1 = ±1, u3 = 0, then f(±1, 0) ≥ 0 is equal to ±r1 + β1 + a∆|x| ≥ 0, or
equivalently β1 + a∆|x| ≥ |r1|, which is the l-th inequality from the system(27).

(ii) Let u3 = 1. The function f(ũ1, 1) represents a broken line with breaks in
ũ1 = 0 and in ũ1 = − yk

xk
≥ 0, xk 6= 0. For the first case the function f(0, 1) ≥ 0
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is equal to r2 + a∆|y| ≥ 0, which is the l-th inequality from the system (28). In
the second case, for each nonzero break of the objective function f(ũ1, 1) we obtain
inequality

r1
−yk

xk
+ r2 + β1

∣∣∣−yk

xk

∣∣∣ +
n∑

i=1

a∆
i

∣∣∣− yk

xk
xi + yi

∣∣∣ ≥ 0.

This inequality can be expressed (since for xk = 0 we get a redundant condition) as

−r1yksgn(xk) + r2|xk|+ β1|yk|+ a∆|ykx− xky| ≥ 0, ∀k = 1, . . . , n,

or in the vector form

−r1yT diag(sgnx) + r2|x|T + β1|y|T + a∆|xyT − yxT | ≥ 0,

which corresponds to the l-th inequality from the system (29).

Putting x = y we immediately have he following corollary.

Corollary 4. Let AI ⊂ Rm×n, BI ,CI ⊂ Rm×h, bI , cI ⊂ Rm. Then for certain
A ∈ AI , B ∈ BI , C ∈ CI , b ∈ bI , c ∈ cI vectors x ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Bz = b, (31)
Ax + Cz ≤ c (32)

if and only if they are a weak solution of the interval system

AIx + BIz = bI , (33)
AIx + CIz ≤ cI , (34)
CIz−BIz ≤ cI − bI . (35)

Proof. According to Theorem 3 vectors x ∈ Rn, z ∈ Rh form a solution of the system
(31)–(32) iff they satisfy the system

A∆|x|+ B∆|z|+ b∆ ≥ |r1|,
A∆|x|+ r2 ≥ 0,

−r1xT diag(sgnx) + r2|x|T + (b∆ + B∆|z|)|x|T + A∆|xxT − xxT | ≥ 0.

From [3, Theorem 2.9 a 2.19] it follows that the first and second inequalities of this
system are equivalent to (33) and (34), respectively. The third inequality can be
rewritten as

−(bc −Acx−Bcz)|xT |+ (c−Acx−Ccz + C∆|z|)|x|T
+(b∆ + B∆|z|)|x|T ≥ 0. (36)

If x = 0, then the statement holds. Assume that x 6= 0. Then the inequality (36)
can be simplified to

−(bc −Acx−Bcz) + (c−Acx−Ccz + C∆|z|) + (b∆ + B∆|z|) ≥ 0,

and consequently to

C∆|z|+ B∆|z|+ c− b ≥ Ccz−Bcz.

According to [3, Theorem 2.19] this inequality is equivalent to (35).
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Theorem 4. Let AI ⊂ Rm×n, BI
i ⊂ Rm×h, CI

j ⊂ Rm×h, bI
i ⊂ Rm, cI

j ⊂ Rm,
i = 1, . . . , p, j = 1, . . . , q. Then for certain matrices A ∈ AI , Bi ∈ BI

i , Cj ∈ CI
j ,

bi ∈ bI
i , cj ∈ cI

j , i = 1, . . . , p, j = 1, . . . , q vectors x ∈ Rn, z ∈ Rh form a solution
of the system

Ax + Biz = bi, ∀i = 1, . . . , p, (37)
Ax + Cjz ≤ cj , ∀j = 1, . . . , q (38)

if and only if they are a weak solution of the interval system

AIx + BI
i z = bI

i , ∀i = 1, . . . , p (39)
AIx + CI

jz ≤ cI
j , ∀j = 1, . . . , q (40)(

BI
i −BI

k

)
z = bI

i − bI
k, ∀i, k : i < k. (41)(

CI
j −BI

i

)
z ≤ cI

j − bI
i , ∀i, j. (42)

Proof. One implication is obvious. If for certain A ∈ AI , Bi ∈ BI
i , Cj ∈ CI

j , bi ∈ bI
i ,

cj ∈ cI
j vectors x ∈ Rn, y ∈ Rh satisfy the system (37)–(38), then they represent a

weak solution of the interval system (39)–(42) as well.
To prove the second implication, denote aI ≡ AI

l,·, bI
i ≡ (BI

i )l,·, cI
j ≡ (CI

j )l,·,
βI

i ≡ (bI
i )l, γI

j ≡ (cI
j )l, i = 1, . . . , p, j = 1, . . . , q. Let us consider the l-th inequalities

in systems (37)–(38) and denote them by

ax + biz = βi, i = 1, . . . , p, (43)
ax + cjz ≤ γj , j = 1, . . . , q, (44)

where a ∈ aI , bi ∈ bI
i , cj ∈ cI

j , βi ∈ βI
i , γj ∈ βI

j . Denote ri ≡ acx + bc
iz − βc

i ,
i = 1, . . . , p and sj ≡ acx + cc

jz − γc
j , j = 1, . . . , q. Vectors x, z satisfy the system

(43)–(44) iff there exists α ∈ 〈−a∆x,a∆x〉 for which we have

|ri + α| ≤ b∆
i |z|+ β∆

i , i = 1, . . . , p,

sj + α ≤ c∆
j |z|+ γ∆

j , j = 1, . . . , q

or equivalently

α ≤ a∆x,

α ≥ −a∆x,

α ≤ −rib∆
i |z|+ β∆

i , i = 1, . . . , p,

α ≥ −ri − b∆
i |z| − β∆

i , i = 1, . . . , p,

α ≤ −sj + c∆
j |z|+ γ∆

j , j = 1, . . . , q.

Such a number α exists iff the following four conditions hold
(i) First condition:

−a∆x ≤ −ri + b∆
i |z|+ β∆

i , i = 1, . . . , p,

a∆x ≥ −ri − b∆
i |z| − β∆

i , i = 1, . . . , p,

or, equivalently

|ri| ≤ b∆
i |z|+ β∆

i , i = 1, . . . , p.
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According to [3, Theorem 2.9] the first condition is equivalent to the condition that
vectors x, z represent a weak solution of the interval equation

aIx + bI
i z = βI

i ,

which corresponds to the l-th equation in the system (39).
(ii) Second condition:

−a∆x ≤ −sj + c∆
j |z|+ γ∆

j , j = 1, . . . , q.

According to [3, Theorem 2.19] the second condition is equivalent to the condition
that vectors x, z represent a weak solution of the interval inequality

aIx + cI
jz ≤ γI

j ,

which corresponds to the l-th inequality in the system (40).
(iii) Third condition:

−rk − b∆
k |z| − β∆

k ≤ −ri + b∆
i |z|+ β∆

i , i, k = 1, . . . , p, i < k,

−ri − b∆
i |z| − β∆

i ≥ −rk + b∆
k |z|+ β∆

k , i, k = 1, . . . , p, i < k,

or, equivalently

|ri − rj | ≤ (b∆
i + b∆

k )|z|+ β∆
i + β∆

k , i, k = 1, . . . , p, i < k.

According to [3, Theorem 2.9] the third condition is equivalent to the condition that
vectors x, z represent a weak solution of the interval equation

(bI
i − bI

k)z = βI
i − βI

k , i, k = 1, . . . , p, i < k,

which corresponds to the l-th equation in the system (41).
(iv) Fourth condition:

−ri − b∆
i |z| − β∆

i ≤ −sj + c∆
j |z|+ γ∆

j , i = 1, . . . , p, j = 1, . . . , q,

or, equivalently

sj − ri ≤ (b∆
i + c∆

j )|z|+ β∆
i + γ∆

j , i = 1, . . . , p, j = 1, . . . , q.

According to [3, Theorem 2.19] the fourth condition is equivalent to the condition
that vectors x, z represent a weak solution of the interval inequality

(cI
j − bI

i )z ≤ γI
j − βI

i , i = 1, . . . , p, j = 1, . . . , q,

which corresponds to the l-th inequality in the system (42).
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