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Consider the multiobjective linear program

max Cx,
xeM

where
M = {x e R": Ax < b}.

Let x* be an efficient solution.

Definition
» Additive tolerance: any J such that x* remains efficient for all
C:‘C,'J'—C,'j| <5;

» Multiplicative tolerance: any ¢ such that x* remains efficient

for all C:|C — C| < §|G]|.
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Normal cone of M at the point x*
N(x*) :={x € R": Dx > 0}.
For a nondegenerate basic solution, D = (Ag") 7.

Theorem (Additive tolerance, Hladik 2007)

Let (A\*,8%) be an optimal solution to the linear program
maxd subject to DCT A —|D|ed >0, X\,6 >0, e’ A =1.
Then 0* is an additive tolerance.

Theorem (Multiplicative tolerance, Hladik 2007)

Let (A\*,0%) be an optimal solution to the generalized linear
fractional program

maxd subject to DCTA—6|D||G|"A >0, \,6 >0, e’ X=1.

Then 0* is a multiplicative tolerance.
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Example (Hansen, Labbé, Wendell 1989)

Consider

0 10 0 80
C=|0 10 10 20},
10 10 10 10

M = {x € R*: 4x; + 9% + 7x3 + 10x3 < 6000,
x1 + xo + 3x3 + 40x4 <4000,
x>0},

and the basic solution x* ~ (1333.33,0,0,66.67) .

» The linear program yields
A* ~(0.2343,0,0.7657), 0* ~ 2.0749.

» The generalized linear fractional program (with G = C) yields
\* =~ (0.2665, 0, 0.7335), §* ~ 0.2195.
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Algorithm
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Additive tolerance matrix

Compute upper matrix

AT and lower matrix A~ such that x*

detains efficiency for every C with —A~ < C — C < A™.

Algorithm

Let (A\*,0%) be an optimal solution to the linear program.

1. Foreachie{l,..

2. Foreachie{l,..

.,s}andje{l,...,n} set

D,. T \ *

AT = inf ke C A :
Y k:Dy<0 |Dlk.e
D,. T \ *

A = Inf k€A :
Y k:ij>0 |D|k.e

., S} with \¥ =0 set

+ . -
A7 =00 Vje{l,...,n},

A =00 Vj€{l,...,n}.
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Proof and example

Sketch of proof.

The possible deviations C of C are determined so that the
inequality DCTA* > 0 remains true.

Example

Reconsider our problem. The first step of Algorithm results in

0* o0* 2.2165 oF 0¥ oo oo OF
AT =6 6 22165 5|, A =6 oo oo I
0* o0* 2.2165 oF 0¥ oo oo OF

where 0* = 2.0749. The second step yields
0* 0% 2.2165 oF 0¥ oo oo OF
AT =00 o o0 o], AT=|o0 o0 o0 o©
0* o0* 2.2165 oF 0¥ oo oo OF
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Compute matrices AT and A~ such that x* detains efficiency for
every C with —|G[;A; < Cj — Cjj < |G|,JA,JJr

Algorithm

Let (A\*,0%) be an optimal solution to the generalized linear
fractional program.

1. Foreachie€{l,...,s} andj € {1,...,n} set

_ D,.CT)\*
AT = f
Y k: [I)rlj<0 |D|k‘G|T)\*’
D,. T \ *
A = inf e C A

U kDg>0 Dk |GITA*
2. Foreachie{l,...,s} with \Y =0 set
+ . -
A7 =00 Vje{l,...,n},

A =00 Vj€e{l,...,n}.



Example

Reconsider our problem, G = C. The first step of Algorithm

Example
results in
o 0* 0.2849
AT = |6 6% 0.2849
o 6 0.2849

and the second step yields

0" 0oF
00 00
0" oF

0.2849
00

0.2849

AT =

where 0* = 0.2195.
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Application to interval MOLP
An interval MOLP problem

max Cx,
xeM

where C varies in C! = {CCR*": C<C<C}
Definition

» A vector x € M is possibly efficient if it is efficient for some

CecCl

» A vector x € M is necessarily efficient if it is efficient for
every C € C!.

Let us denote C¢ := 3.(C + C) and consider the MOLP problem

max C¢x.
xXEM

Let (A*,0%) be an optimal solution to the linear (or generalized
linear fractional) program.
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Sufficient condition

Theorem
The vector x* is necessarily efficient if DC'\* > 0.

Example
Consider the interval matrix

[—1,1] [8,12] [-1,1] [75,85]

C'=|([-1,1] [8,12] [8,12] [17,23]
8,12] [8,12] [8,12] [8,12]

The feasible set M and its point x* is defined as before. The
midpoint matrix is

0 10 0 80
C=1 0 10 10 20
10 10 10 10

Then \* ~ (0.2343,0,0.7657) (or A* ~ (0.2665,0,0.7335)),
DC'\* > 0 and hence x* is necessarily efficient.



The End.



