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Let x∗ be an efficient solution.

Definition

I Additive tolerance: any δ such that x∗ remains efficient for all
Ĉ : |Cij − Ĉij | < δ;

I Multiplicative tolerance: any δ such that x∗ remains efficient
for all Ĉ : |C − Ĉ | < δ|G |.
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Let (λ∗, δ∗) be an optimal solution to the linear program

max δ subject to DCTλ − |D|eδ ≥ 0, λ, δ ≥ 0, eTλ = 1.

Then δ∗ is an additive tolerance.

Theorem (Multiplicative tolerance, Hlad́ık 2007)

Let (λ∗, δ∗) be an optimal solution to the generalized linear

fractional program

max δ subject to DCTλ − δ|D||G |Tλ ≥ 0, λ, δ ≥ 0, eTλ = 1.

Then δ∗ is a multiplicative tolerance.
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and the basic solution x∗ ' (1333.33, 0, 0, 66.67)T .
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Example (Hansen, Labbé, Wendell 1989)

Consider

C =





0 10 0 80
0 10 10 20

10 10 10 10



 ,

M = {x ∈ R
4 : 4x1 + 9x2 + 7x3 + 10x4 ≤ 6000,

x1 + x2 + 3x3 + 40x4 ≤ 4000,

x ≥ 0},

and the basic solution x∗ ' (1333.33, 0, 0, 66.67)T .

I The linear program yields
λ∗ ' (0.2343, 0, 0.7657), δ∗ ' 2.0749.

I The generalized linear fractional program (with G = C ) yields
λ∗ ' (0.2665, 0, 0.7335), δ∗ ' 0.2195.
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∆−

ij := inf
k: Dkj>0

Dk·C
Tλ∗

|D|k·e
.

2. For each i ∈ {1, . . . , s} with λ∗
i = 0 set

∆+
ij := ∞ ∀j ∈ {1, . . . , n},

∆−

ij := ∞ ∀j ∈ {1, . . . , n}.
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Let (λ∗, δ∗) be an optimal solution to the generalized linear

fractional program.

1. For each i ∈ {1, . . . , s} and j ∈ {1, . . . , n} set
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Reconsider our problem, G = C . The first step of Algorithm
results in
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where δ∗ = 0.2195.
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An interval MOLP problem

max
x∈M

Cx ,

where C varies in C I = {C ⊆ R
s×n : C ≤ C ≤ C}.

Definition

I A vector x ∈ M is possibly efficient if it is efficient for some
C ∈ C I .

I A vector x ∈ M is necessarily efficient if it is efficient for
every C ∈ C I .

Let us denote C c := 1
2
.(C + C ) and consider the MOLP problem

max
x∈M

C cx .

Let (λ∗, δ∗) be an optimal solution to the linear (or generalized
linear fractional) program.
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The feasible set M and its point x∗ is defined as before. The
midpoint matrix is
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Then λ∗ ' (0.2343, 0, 0.7657) (or λ∗ ' (0.2665, 0, 0.7335)),
DC Iλ∗ > 0 and hence x∗ is necessarily efficient.



The End.


